




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.2.2菱形的性质一、教材分析人教版八年级下册第十八章第二节的内容。纵观整个初中数学教材,它是在学生掌握了平行四边形、矩形的性质与判别之后,具备了初步的观察,操作等活动经验的基础上讲授的。这一节既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。它进一步丰富了学生对图形的认识和感受。在本节通过证明菱形的基本性质,让学生进一步体会证明的必要性,理解证明的基本过程。二、学情分析学生在小学已初步掌握了平行四边形的一些简单性质,并知道菱形是特殊的平行四边形,在初中的学习中又学习了相交线、平行线、三角形、轴对称图形以及平行四边形、矩形等知识,在学习过程中,学生多次进行了观察、测量、画图、拼图、折叠、图形设计等活动,积累了丰富的数学活动经验和感受,也具备了一定的观察、操作、推理、概括等能力.三、设计理念 为进一步深化生命化的课堂,让学生成为学生的主体,把问题贯穿于学生学习的全过程,使思维训练渗透于课前、课中,课后的各环节。而本节课菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让学生操作、观察、猜测、验证,获得知识,培养主动探究的能力,和用多种方法解决问题的能力。教学目标知识与技能1、理解并掌握菱形的定义及性质定理1、2;会用这些定理进行有关的论证和计算;2、培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;3通过运用菱形知识解决具体问题,提高分析能力和观察能力4根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想过程与方法经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法。情感态度与价值观培养学生主动探究的习惯和严密的思维意识、审判观、价值观。并在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点。重点菱形的性质定理1、2。难点定理的证明方法及运用。教学过程备 注教学设计 与 师生互动为研究另一个特殊的平行四边形菱形,铺垫学习思路。通过动手操作,使学生对菱形有一个感性认识,同时培养学生养成一边动手一边思考的良好习惯。本方法直观得到了菱形的重要性质菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.同时为下面证明菱形性质作铺垫。让学生分析思路可培养学生语言表达能力,学生可以利用菱形的性质、证明三角形全等等,培养学生用多种方法解题的能力,通过讨论,选择最简单的方法进行板演,这样有助于提高学生的解题能力,并可以规范学生的书写格式。第一步:创情导入1(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2(引入)我们已经学习了一种特殊的平行四边形矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念菱形定义:有一组邻边相等的平行四边形叫做菱形【强调】菱形(1)是平行四边形;(2)一组邻边相等让学生举一些日常生活中所见到过的菱形的例子探究:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢?第二步:探究新知:探究:菱形的性质,让学生动手利用折纸、剪切的方法,探究、归纳方法一:将一张长方形的纸横对折,再竖对折(如教材P107的探究),然后沿图中的虚线剪下,打开即是菱形纸片;方法二:如图1,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形; 图1 图2方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形(如图2) 总结:菱形的性质:菱形的四条边都相等。菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。探索:菱形的面积公式是什么?如何证明这个公式?(提示:四个全等的直角三角形。)第三步:应用举例:例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E 求证:AFD=CBE 证明:四边形ABCD是菱形, CB=CD, CA平分BCD BCE=DCE又 CE=CE, BCECOB(SAS) CBE=CDE 在菱形ABCD中,ABCD, AFD=FDCAFD=CBE例2、已知:如图,AD是三角形ABC的角平分线,DEAC交AB于E,DFAB交AC于F,求证:四边形AEDF是菱形。(提示:运用定义判定。)例3(教材P108例2)略例4、如图是菱形花坛ABCD,它的边长为20m,ABC=60,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m2).ABDCOHADCOB例5、如图,四边形ABCD是菱形. 对角线AC=8,DB=6,DHAB与H.求DH的长.【能力提高】ABCOD1、如图AD是ABC的角平分线,DEAC,DFAB,求证:四边形AEDF是菱形。CBEAFD2、已知如图,菱形ABCD中,ADC=120,AC=,(1)求BD的长;(2)求菱形ABCD的面积,(3)写出A、B、C、D的坐标.第四步、随堂练习1若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 2已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积3已知菱形ABCD的周长为20cm,且相邻两内角之比是12,求菱形的对角线的长和面积4已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF求证:AEF=AFE 第五步:课后练习1菱形ABCD中,DA=31,菱形的周长为 8cm,求菱形的高2如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑假学生社会实践活动方案
- 文艺界新质生产力
- 卫生院健康教育工作方案
- 2025年儿科学各学科模拟竞赛试卷答案及解析
- 提高压杆稳定性的措施
- 医护关系现状调查
- 梁的刚度计算
- 2025年药学药物相互作用判断练习答案及解析
- 2025年急诊医学常见情况处理流程模拟考试卷答案及解析
- 2025年病理科学病理标本切片鉴别诊断技巧考试卷答案及解析
- 家具厂封边技能培训
- 重点群体人员本年度实际工作时间表
- DBJ50-T-386-2021 建筑施工现场扬尘控制标准
- 数据科学与大数据技术导论-第1章-数据科学概述
- 健康指南妊娠糖尿病孕期饮食控制的重要性
- 《美丽中国是我家》-教学设计
- 军工行业保密知识传授培训
- 新教科版五年级上册科学全册实验报告
- 实验动物微生物学和寄生虫学质量控制课件
- 殡葬经济现代墓地投资项目分析报告
- 视网膜分支静脉阻塞的护理课件
评论
0/150
提交评论