




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大值与最小值 1 一 复习与引入 1 当函数f x 在x0处连续时 判别f x0 是极大 小 值的方法是 如果在x0附近的左侧右侧 那么 f x0 是极大值 如果在x0附近的左侧右侧 那么 f x0 是极小值 2 导数为零的点是该点为极值点的必要条件 而不是充分条件 极值只能在函数不可导的点或导数为零的点取到 3 在某些问题中 往往关心的是函数在一个定义区间上 哪个值最大 哪个值最小 而不是极值 2 二 新课 函数的最值 观察右边一个定义在区间 a b 上的函数y f x 的图象 发现图中 是极小值 是极大值 在区间上的函数的最大值是 最小值是 问题在于如果在没有给出函数图象的情况下 怎样才能判断出f x3 是最小值 而f b 是最大值呢 3 设函数f x 在 a b 上连续 在 a b 内可导 则求f x 在 a b 上的最大值与最小值的步骤如下 求y f x 在 a b 内的极值 极大值与极小值 将函数y f x 的各极值与f a f b 作比较 其中最大的一个为最大值 最小的一个为最小值 求函数的最值时 应注意以下几点 1 函数的极值是在局部范围内讨论问题 是一个局部概念 而函数的最值是对整个定义域而言 是在整体范围内讨论问题 是一个整体性的概念 2 闭区间 a b 上的连续函数一定有最值 开区间 a b 内的可导函数不一定有最值 但若有唯一的极值 则此极值必是函数的最值 4 3 函数在其定义域上的最大值与最小值至多各有一个 而函数的极值则可能不止一个 也可能没有极值 并且极大值 极小值 不一定就是最大值 最小值 但除端点外在区间内部的最大值 或最小值 则一定是极大值 或极小值 4 如果函数不在闭区间 a b 上可导 则在确定函数的最值时 不仅比较该函数各导数为零的点与端点处的值 还要比较函数在定义域内各不可导的点处的值 5 在解决实际应用问题中 如果函数在区间内只有一个极值点 这样的函数称为单峰函数 那么要根据实际意义判定是最大值还是最小值即可 不必再与端点的函数值进行比较 5 三 例题选讲 例1 求函数y x4 2x2 5在区间 2 2 上的最大值与最小值 解 令 解得x 1 0 1 当x变化时 的变化情况如下表 从上表可知 最大值是13 最小值是4 6 例2 求函数在区间 1 3 上的最大值与最小值 解 令 得 相应的函数值为 又f x 在区间端点的函数值为 f 1 6 f 3 0 比较得 f x 在点处取得最大值在点处取得最小值 7 延伸1 设 函数的最大值为1 最小值为 求常数a b 解 令得x 0或a 当x变化时 f x 的变化情况如下表 由表知 当x 0时 f x 取得极大值b 而f 0 f a f 0 f 1 f 1 f 1 故需比较f 1 与f 0 的大小 f 0 f 1 3a 2 1 0 所以f x 的最大值为f 0 b 故b 1 8 又f 1 f a a 1 2 a 2 2 0 所以f x 的最小值为f 1 1 3a 2 b 3a 2 所以 延伸2 设p 1 0 x 1 求函数f x xp 1 x p的值域 说明 由于f x 在 0 1 上连续可导 必有最大值与最小值 因此求函数f x 的值域 可转化为求最值 解 令 则得xp 1 1 x p 1 即x 1 x x 1 2 而f 0 f 1 1 因为p 1 故1 1 2p 1 所以f x 的最小值为 最大值为1 从而函数f x 的值域为 9 练习2 求函数f x p2x2 1 x p p是正数 在 0 1 上的最大值 解 令 解得 在 0 1 上 有f 0 0 f 1 0 故所求最大值是 练习1 求函数f x 2x3 3x2 12x 14在区间 3 4 上的最大值和最小值 答案 最大值为f 4 142 最小值为f 1 7 10 四 应用 1 实际问题中的应用 在日常生活 生产和科研中 常常会遇到求函数的最大 小 值的问题 建立目标函数 然后利用导数的方法求最值是求解这类问题常见的解题思路 在建立目标函数时 一定要注意确定函数的定义域 在实际问题中 有时会遇到函数在区间内只有一个点使的情形 如果函数在这个点有极大 小 值 那么不与端点值比较 也可以知道这就是最大 小 值 这里所说的也适用于开区间或无穷区间 满足上述情况的函数我们称之为 单峰函数 11 例1 在边长为60cm的正方形铁皮的四角切去相等的正方形 再把它的边沿虚线折起 如图 做成一个无盖的方底箱子 箱底边长为多少时 箱子的容积最大 最大容积是多少 解 设箱底边长为x 则箱高h 60 x 2 箱子容积V x x2h 60 x2 x3 2 0 x 60 令 解得x 0 舍去 x 40 且V 40 16000 由题意可知 当x过小 接近0 或过大 接近60 时 箱子的容积很小 因此 16000是最大值 答 当x 40cm时 箱子容积最大 最大容积是16000cm3 12 类题 圆柱形金属饮料罐的容积一定时 它的高与底半径应怎样选取 才能使所用的材料最省 解 设圆柱的高为h 底半径为r 则表面积S 2 rh 2 r2 由V r2h 得 则 令 解得 从而 即h 2r 由于S r 只有一个极值 所以它是最小值 答 当罐的高与底半径相等时 所用的材料最省 13 解 设DA xkm 那么DB 100 x km CD km 又设铁路上每吨千米的运费为3t元 则公路上每吨千米的运费为5t元 这样 每吨原料从供应站B运到工厂C的总运费为 14 令 在的范围内有唯一解x 15 所以 当x 15 km 即D点选在距A点15千米时 总运费最省 注 可以进一步讨论 当AB的距离大于15千米时 要找的最优点总在距A点15千米的D点处 当AB之间的距离不超过15千米时 所选D点与B点重合 练习 已知圆锥的底面半径为R 高为H 求内接于这个圆锥体并且体积最大的圆柱体的高h 答 设圆柱底面半径为r 可得r R H h H 易得当h H 3时 圆柱体的体积最大 2 与数学中其它分支的结合与应用 15 解 设B x 0 0 x 2 则A x 4x x2 从而 AB 4x x2 BC 2 2 x 故矩形ABCD的面积为 S x AB BC 2x3 12x2 16x 0 x 2 令 得 所以当时 因此当点B为时 矩形的最大面积是 16 例2 已知x y为正实数 且x2 2x 4y2 0 求xy的最大值 解 由x2 2x 4y2 0得 x 1 2 4y2 1 设 由x y为正实数得 设 令 得又 又f 0 f 0 故当时 17 例3 证明不等式 证 设 则 令 结合x 0得x 1 而01时 所以x 1是f x 的极小值点 所以当x 1时 f x 取最小值f 1 1 从而当x 0时 f x 1恒成立 即 成立 18 五 小结 1 求在 a b 上连续 a b 上可导的函数f x 在 a b 上的最值的步骤 1 求f x 在 a b 内的极值 2 将f x 的各极值与f a f b 比较 其中最大的一个是最大值 最小的一个是最小值 2 求函数的最值时 应注意以下几点 1 要正确区分极值与最值这两个概念 2 在 a b 上连续 a b 上可导的函数f x 在 a b 内未必有最大值与最小值 3 一旦给出的函数在 a b 上有个别不可导点的话 不要忘记在步骤 2 中 要把这些点的函数值与各极值和f a f b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年滤紫外石英玻璃灯管资金申请报告代可行性研究报告
- 负载测试工具的选择与应用试题及答案
- 2025年中国变速V带行业市场前景预测及投资价值评估分析报告
- 抖音网红代言合作内容制作与推广协议
- 智能手机摄像头模组研发与市场推广合作合同
- 拓展产业链畜牧养殖场承包经营与饲料加工合同
- 贵重物品物流保险赔偿协议
- 教育培训机构课程推广与教育投资合作协议
- 金融理财产品风险控制协议追加条款
- 跨国商标保护与维权合作协议
- 田亩转户协议书
- 2025年MySQL开发趋势试题及答案研究
- 违约就业协议书
- 《人工智能通识导论(慕课版)》全套教学课件
- 烘培创业合伙协议书
- 2025年信息系统管理知识考试试题及答案
- 马法理学试题及答案
- 2025年全国保密教育线上培训考试试题库附完整答案(夺冠系列)含答案详解
- 视频制作拍摄服务方案投标文件(技术方案)
- 量子计算中的量子比特稳定性研究-全面剖析
- 构建健全企业资金体系
评论
0/150
提交评论