




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 因式分解3公式法总体说明本节是因式分解的第3小节,占两个课时,这是第一课时,它主要让学生经历通过整式乘法的平方差公式的逆向运用得出因式分解的平方差公式的过程,发展学生的观察能力和逆向思维能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系一、学生知识状况分析学生的技能基础:学生在上几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为今天的深入学习提供了必要的基础学生活动经验基础: 通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验二、教学任务分析学生在学习了用提取公因式法进行因式分解的基础上,本节课又安排了用公式法进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。因此,本课时的教学目标是:知识与技能: (1)使学生了解运用公式法分解因式的意义; (2)会用平方差公式进行因式分解; (3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式数学能力: (1)发展学生的观察能力和逆向思维能力; (2)培养学生对平方差公式的运用能力情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法 三、教学过程分析 本节课设计了六个教学环节:练一练想一想做一做议一议反馈练习学生反思第一环节 练一练知识回顾1、什么叫把多项式因式分解?把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.2、因式分解和整式乘法有何关系?多项式的因式分解与整式乘法互为逆运算.3、什么叫做提公因式法?把一个多项式的各项含有的公因式提出来,从而将多项式化成两个因式乘积的形式。这种因式分解的方法叫做提公因式法。快速热身:25 x2 (_)236a4 (_)20.49 b2 (_)264x2y2 (_)2 b2 (_)2活动内容:填空: (1)(x+5)(x5) = ;(2)(3x+y)(3xy)= ;(3)2(m+n)+12(m+n)-1= 根据上面式子填空:(1)x2-25= ;(2)9x2y2= ;(3)4(m+n)2-1= .活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系第二环节 想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2b2=(a+b)(ab)两个数的平方差,等于这两个数的和与这两个数的差的积。说说平方差公式的特点:a2b2= (a+b)(ab)左边:两个数的平方差;只有两项 右边:两数的和与差相乘形象地表示为22()()22()()活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成第三环节 做一做活动内容:把下列各式因式分解: (1)2516x2 (2)9a2解:(1)2516x2=52(4x)2=(5+4x)(54x);(2)9a2 b2=(3a)2(b)2=(3a+b)(3ab).活动目的:培养学生对平方差公式的应用能力注意事项:学生对含有分数的平方差公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误第四环节 议一议活动内容:将下列各式因式分解:(1)9(xy)2(x+y)2 (2)2x38x (3)a4-b4解:(1)9(m +n)2(mn)2=3(m +n)2(mn)2=3(m +n)+(mn)3(m +n)(mn)=(3 m +3n+ mn)(3 m +3nm +n)=(4 m +2n)(2 m +4n)=4(2 m +n)(m +2n)(2)2x38x=2x(x24)=2x(x+2)(x2)(3)解:a4-b4=(a2-b2)(a2+b2)=(a+b)(a-b)(a2+b2)通过做第(3)小题你总结出什么吗?知识加油站 分解因式一直到不能分解为止。所以分解后一定检查括号内是否能继续分解。活动目的:(1)让学生理解在平方差公式a2b2=(a+b)(ab)中的a与b不仅可以表示单项式,也可以表示多项式,向学生渗透换元的思想方法; (2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式注意事项:在教师的引导下,学生能逐步理解平方差公式中的a与b不仅可以表示单项式,也可以表示多项式第五环节 反馈练习活动内容:1、判断正误: (1)x2+y2=(x+y)(xy) ( ) (2)x2+y2=(x+y)(xy) ( ) (3)x2y2=(x+y)(xy) ( ) (4)x2y2=(x+y)(xy) ( )2、把下列各式因式分解: (1)4m2 (2)9m24n2 (3)a2b2m2 (4)(ma)2(nb)2 (5)16x481y4 (6)3x3y12xy3、如图,在一块边长为a的正方形纸片的四角,各剪去一个边长为b的正方形用a 与b表示剩余部分的面积,并求当a=3.6,b=0.8时的面积活动目的:通过学生的反馈练习,使教师能全面了解学生对平方差公式的特征是否清楚,对平方差公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏注意事项:在实际应用中,部分学生对于第3题因式分解的实际应用不能理解,他们没有采用因式分解的方法,而是利用计算器硬生生地计算出来第六环节 学生反思活动内容:从今天的课程中,你学到了哪些知识? 掌握了哪些方法?活动目的:通过学生的回顾与反思,强化学生对整式乘法的平方差公式的与因式分解的平方差公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解注意事项:学生认识到了以下事实:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;课后练习:课本第100页习题4.4第1、2、3题.【课后反思】本节课上下来我整体感觉完成了我课前设定的目标,学生能够很快地掌握利用平方差公式来进行因式分解,而且对一般形式的能使用平方差公式的多项式能够进行因式分解。学生在课堂上和老师的互动也比较好,自我感觉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育心理学专业理论考试卷及答案
- 2025年三级上册语文试卷及答案
- 2025年水利云播五大员考试题库含答案
- 2025年静配中心相关知识年度考核试题(含答案)
- 2025年电力安全竞赛试题及答案
- 2025年度儿科急救理论大赛试题库及答案
- 地瓜种植创新创业项目商业计划书
- 早教启蒙玩具与亲子互动创新创业项目商业计划书
- 文化旅游线路设计创新创业项目商业计划书
- 水产美食体验园创新创业项目商业计划书
- 组织机构与部门设置说明-零售药店二类器械备案申报资料
- 个人理财(第2版) 宋蔚蔚全套教案课件
- 工厂员工喝酒免责协议书
- 车位顶账协议书
- 养老护理员四级考试题库及答案
- DB44-T 2432-2023 高速公路机电设施养护作业规范
- 企业法律法规培训课件
- 语文单招讲解课件
- 中国电子科技集团公司第三十六研究所新能源、电子项目(二期)环评报告
- 快递客户服务培训
- 工艺验证检查指南2025
评论
0/150
提交评论