2019年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版) 【微信公众号:最强高中 免费获取】.doc

2019年全国统一高考数学(文科)(新课标ⅲ)

收藏

压缩包内文档预览:(预览前20页/共30页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:67662187    类型:共享资源    大小:2.19MB    格式:ZIP    上传时间:2020-04-06 上传人:独** IP属地:江苏
20
积分
关 键 词:
2019 全国 统一 高考 数学 文科 新课
资源描述:
2019年全国统一高考数学(文科)(新课标ⅲ),2019,全国,统一,高考,数学,文科,新课
内容简介:
2016年全国统一高考数学试卷(文科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1(5分)设集合A=0,2,4,6,8,10,B=4,8,则AB=()A4,8B0,2,6C0,2,6,10D0,2,4,6,8,102(5分)若z=4+3i,则=()A1B1C+iDi3(5分)已知向量=(,),=(,),则ABC=()A30B45C60D1204(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15,B点表示四月的平均最低气温约为5,下面叙述不正确的是()A各月的平均最低气温都在0以上B七月的平均温差比一月的平均温差大C三月和十一月的平均最高气温基本相同D平均最高气温高于20的月份有5个5(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()ABCD6(5分)若tan=,则cos2=()ABCD7(5分)已知a=,b=,c=,则()AbacBabcCbcaDcab8(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A3B4C5D69(5分)在ABC中,B=,BC边上的高等于BC,则sinA=()ABCD10(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A18+36B54+18C90D8111(5分)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是()A4BC6D12(5分)已知O为坐标原点,F是椭圆C:+=1(ab0)的左焦点,A,B分别为C的左,右顶点P为C上一点,且PFx轴,过点A的直线l与线段PF交于点M,与y轴交于点E若直线BM经过OE的中点,则C的离心率为()ABCD二、填空题(共4小题,每小题5分,满分20分)13(5分)设x,y满足约束条件,则z=2x+3y5的最小值为 14(5分)函数y=sinxcosx的图象可由函数y=2sinx的图象至少向右平移 个单位长度得到15(5分)已知直线l:xy+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点则|CD|= 16(5分)已知f(x)为偶函数,当x0时,f(x)=ex1x,则曲线y=f(x)在点(1,2)处的切线方程是 三、解答题(共5小题,满分60分)17(12分)已知各项都为正数的数列an满足a1=1,an2(2an+11)an2an+1=0(1)求a2,a3;(2)求an的通项公式18(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图注:年份代码17分别对应年份20082014()由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:yi=9.32,tiyi=40.17,=0.55,2.646参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=19(12分)如图,四棱锥PABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点()证明MN平面PAB;()求四面体NBCM的体积20(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点()若F在线段AB上,R是PQ的中点,证明ARFQ;()若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程21(12分)设函数f(x)=lnxx+1(1)讨论f(x)的单调性;(2)证明当x(1,+)时,1x;(3)设c1,证明当x(0,1)时,1+(c1)xcx请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22(10分)如图,O中的中点为P,弦PC,PD分别交AB于E,F两点(1)若PFB=2PCD,求PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OGCD选修4-4:坐标系与参数方程23在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin(+)=2(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标选修4-5:不等式选讲24已知函数f(x)=|2xa|+a(1)当a=2时,求不等式f(x)6的解集;(2)设函数g(x)=|2x1|,当xR时,f(x)+g(x)3,求a的取值范围2016年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)设集合A=0,2,4,6,8,10,B=4,8,则AB=()A4,8B0,2,6C0,2,6,10D0,2,4,6,8,10【考点】1H:交、并、补集的混合运算菁优网版权所有【专题】11:计算题;29:规律型;5J:集合【分析】根据全集A求出B的补集即可【解答】解:集合A=0,2,4,6,8,10,B=4,8,则AB=0,2,6,10故选:C【点评】本题考查集合的基本运算,是基础题2(5分)若z=4+3i,则=()A1B1C+iDi【考点】A5:复数的运算菁优网版权所有【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数【分析】利用复数的除法以及复数的模化简求解即可【解答】解:z=4+3i,则=i故选:D【点评】本题考查复数的代数形式混合运算,考查计算能力3(5分)已知向量=(,),=(,),则ABC=()A30B45C60D120【考点】9S:数量积表示两个向量的夹角菁优网版权所有【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cosABC的值,根据ABC的范围便可得出ABC的值【解答】解:,;又0ABC180;ABC=30故选:A【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角4(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15,B点表示四月的平均最低气温约为5,下面叙述不正确的是()A各月的平均最低气温都在0以上B七月的平均温差比一月的平均温差大C三月和十一月的平均最高气温基本相同D平均最高气温高于20的月份有5个【考点】F4:进行简单的合情推理菁优网版权所有【专题】31:数形结合;4A:数学模型法;5M:推理和证明【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可【解答】解:A由雷达图知各月的平均最低气温都在0以上,正确B七月的平均温差大约在10左右,一月的平均温差在5左右,故七月的平均温差比一月的平均温差大,正确C三月和十一月的平均最高气温基本相同,都为10,正确D平均最高气温高于20的月份有7,8两个月,故D错误,故选:D【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键5(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()ABCD【考点】CC:列举法计算基本事件数及事件发生的概率菁优网版权所有【专题】11:计算题;38:对应思想;4B:试验法;5I:概率与统计【分析】列举出从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字的基本事件数,然后由随机事件发生的概率得答案【解答】解:从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字,取法总数为:(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)共15种其中只有一个是小敏的密码前两位由随机事件发生的概率可得,小敏输入一次密码能够成功开机的概率是故选:C【点评】本题考查随机事件发生的概率,关键是列举基本事件总数时不重不漏,是基础题6(5分)若tan=,则cos2=()ABCD【考点】GF:三角函数的恒等变换及化简求值菁优网版权所有【专题】11:计算题;35:转化思想;56:三角函数的求值【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将tan的值代入计算即可求出值【解答】解:tan=,cos2=2cos21=1=1=故选:D【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键7(5分)已知a=,b=,c=,则()AbacBabcCbcaDcab【考点】4Y:幂函数的单调性、奇偶性及其应用菁优网版权所有【专题】35:转化思想;4R:转化法;51:函数的性质及应用【分析】b=,c=,结合幂函数的单调性,可比较a,b,c,进而得到答案【解答】解:a=,b=,c=,综上可得:bac,故选:A【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档8(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A3B4C5D6【考点】EF:程序框图菁优网版权所有【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s16,退出循环,输出n的值为4【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s16,执行循环体,a=2,b=6,a=4,s=10,n=2不满足条件s16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s16,执行循环体,a=2,b=6,a=4,s=20,n=4满足条件s16,退出循环,输出n的值为4故选:B【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题9(5分)在ABC中,B=,BC边上的高等于BC,则sinA=()ABCD【考点】HT:三角形中的几何计算;HU:解三角形菁优网版权所有【专题】11:计算题;35:转化思想;58:解三角形【分析】由已知,结合勾股定理和余弦定理,求出AB,AC,再由三角形面积公式,可得sinA【解答】解:在ABC中,B=,BC边上的高等于BC,AB=BC,由余弦定理得:AC=BC,故BCBC=ABACsinA=BCBCsinA,sinA=,故选:D【点评】本题考查的知识点是三角形中的几何计算,熟练掌握正弦定理和余弦定理,是解答的关键10(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A18+36B54+18C90D81【考点】L!:由三视图求面积、体积菁优网版权所有【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:36=18,侧面的面积为:(33+3)2=18+18,故棱柱的表面积为:182+18+18=54+18故选:B【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键11(5分)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是()A4BC6D【考点】LF:棱柱、棱锥、棱台的体积菁优网版权所有【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何【分析】根据已知可得直三棱柱ABCA1B1C1的内切球半径为,代入球的体积公式,可得答案【解答】解:ABBC,AB=6,BC=8,AC=10故三角形ABC的内切圆半径r=2,又由AA1=3,故直三棱柱ABCA1B1C1的内切球半径为,此时V的最大值=,故选:B【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键12(5分)已知O为坐标原点,F是椭圆C:+=1(ab0)的左焦点,A,B分别为C的左,右顶点P为C上一点,且PFx轴,过点A的直线l与线段PF交于点M,与y轴交于点E若直线BM经过OE的中点,则C的离心率为()ABCD【考点】K4:椭圆的性质菁优网版权所有【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值【解答】解:由题意可设F(c,0),A(a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=c,可得M(c,k(ac),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得kBH=kBM,即为=,化简可得=,即为a=3c,可得e=另解:由AMFAEO,可得=,由BOHBFM,可得=,即有=即a=3c,可得e=故选:A【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题二、填空题(共4小题,每小题5分,满分20分)13(5分)设x,y满足约束条件,则z=2x+3y5的最小值为10【考点】7C:简单线性规划菁优网版权所有【专题】11:计算题;35:转化思想;44:数形结合法;59:不等式的解法及应用【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案【解答】解:由约束条件作出可行域如图,联立,解得,即A(1,1)化目标函数z=2x+3y5为由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2(1)+3(1)5=10故答案为:10【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题14(5分)函数y=sinxcosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到【考点】HJ:函数y=Asin(x+)的图象变换菁优网版权所有【专题】39:运动思想;49:综合法;57:三角函数的图像与性质【分析】令f(x)=2sinx,则f(x)=2in(x),依题意可得2sin(x)=2sin(x),由=2k(kZ),可得答案【解答】解:y=sinxcosx=2sin(x),令f(x)=2sinx,则f(x)=2in(x)(0),依题意可得2sin(x)=2sin(x),故=2k(kZ),即=2k+(kZ),当k=0时,正数min=,故答案为:【点评】本题考查函数y=sinx的图象变换得到y=Asin(x+)(A0,0)的图象,得到=2k(kZ)是关键,属于中档题15(5分)已知直线l:xy+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点则|CD|=4【考点】J8:直线与圆相交的性质菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆【分析】先求出|AB|,再利用三角函数求出|CD|即可【解答】解:由题意,圆心到直线的距离d=3,|AB|=2=2,直线l:xy+6=0直线l的倾斜角为30,过A,B分别作l的垂线与x轴交于C,D两点,|CD|=4故答案为:4【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础16(5分)已知f(x)为偶函数,当x0时,f(x)=ex1x,则曲线y=f(x)在点(1,2)处的切线方程是y=2x【考点】6H:利用导数研究曲线上某点切线方程菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;53:导数的综合应用【分析】由已知函数的奇偶性结合x0时的解析式求出x0时的解析式,求出导函数,得到f(1),然后代入直线方程的点斜式得答案【解答】解:已知f(x)为偶函数,当x0时,f(x)=ex1x,设x0,则x0,f(x)=f(x)=ex1+x,则f(x)=ex1+1,f(1)=e0+1=2曲线y=f(x)在点(1,2)处的切线方程是y2=2(x1)即y=2x故答案为:y=2x【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查了函数解析式的求解及常用方法,是中档题三、解答题(共5小题,满分60分)17(12分)已知各项都为正数的数列an满足a1=1,an2(2an+11)an2an+1=0(1)求a2,a3;(2)求an的通项公式【考点】8H:数列递推式菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列【分析】(1)根据题意,由数列的递推公式,令n=1可得a12(2a21)a12a2=0,将a1=1代入可得a2的值,进而令n=2可得a22(2a31)a22a3=0,将a2=代入计算可得a3的值,即可得答案;(2)根据题意,将an2(2an+11)an2an+1=0变形可得(an2an+1)(an+an+1)=0,进而分析可得an=2an+1或an=an+1,结合数列各项为正可得an=2an+1,结合等比数列的性质可得an是首项为a1=1,公比为的等比数列,由等比数列的通项公式计算可得答案【解答】解:(1)根据题意,an2(2an+11)an2an+1=0,当n=1时,有a12(2a21)a12a2=0,而a1=1,则有1(2a21)2a2=0,解可得a2=,当n=2时,有a22(2a31)a22a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,an2(2an+11)an2an+1=0,变形可得(an2an+1)(an+1)=0,即有an=2an+1或an=1,又由数列an各项都为正数,则有an=2an+1,故数列an是首项为a1=1,公比为的等比数列,则an=1()n1=()n1,故an=()n1【点评】本题考查数列的递推公式,关键是转化思路,分析得到an与an+1的关系18(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图注:年份代码17分别对应年份20082014()由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:yi=9.32,tiyi=40.17,=0.55,2.646参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=【考点】BK:线性回归方程菁优网版权所有【专题】11:计算题;35:转化思想;5I:概率与统计【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:r=0.993,0.9930.75,故y与t之间存在较强的正相关关系;(2)=0.103,=1.3310.10340.92,y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.109+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心19(12分)如图,四棱锥PABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点()证明MN平面PAB;()求四面体NBCM的体积【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行菁优网版权所有【专题】14:证明题;35:转化思想;49:综合法;5F:空间位置关系与距离【分析】()取BC中点E,连结EN,EM,得NE是PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN平面PAB()取AC中点F,连结NF,NF是PAC的中位线,推导出NF面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体NBCM的体积【解答】证明:()取BC中点E,连结EN,EM,N为PC的中点,NE是PBC的中位线NEPB,又ADBC,BEAD,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,BE=BC=AM=2,四边形ABEM是平行四边形,EMAB,平面NEM平面PAB,MN平面NEM,MN平面PAB解:()取AC中点F,连结NF,NF是PAC的中位线,NFPA,NF=2,又PA面ABCD,NF面ABCD,如图,延长BC至G,使得CG=AM,连结GM,AMCG,四边形AGCM是平行四边形,AC=MG=3,又ME=3,EC=CG=2,MEG的高h=,SBCM=2,四面体NBCM的体积VNBCM=【点评】本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养20(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点()若F在线段AB上,R是PQ的中点,证明ARFQ;()若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程【考点】J3:轨迹方程;K8:抛物线的性质菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程【分析】()连接RF,PF,利用等角的余角相等,证明PRA=PQF,即可证明ARFQ;()利用PQF的面积是ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程【解答】()证明:连接RF,PF,由AP=AF,BQ=BF及APBQ,得AFP+BFQ=90,PFQ=90,R是PQ的中点,RF=RP=RQ,PARFAR,PAR=FAR,PRA=FRA,BQF+BFQ=180QBF=PAF=2PAR,FQB=PAR,PRA=PQF,ARFQ()设A(x1,y1),B(x2,y2), F(,0),准线为 x=, SPQF=|PQ|=|y1y2|,设直线AB与x轴交点为N,SABF=|FN|y1y2|,PQF的面积是ABF的面积的两倍,2|FN|=1,xN=1,即N(1,0)设AB中点为M(x,y),由得=2(x1x2),又=,=,即y2=x1AB中点轨迹方程为y2=x1【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题21(12分)设函数f(x)=lnxx+1(1)讨论f(x)的单调性;(2)证明当x(1,+)时,1x;(3)设c1,证明当x(0,1)时,1+(c1)xcx【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值菁优网版权所有【专题】35:转化思想;48:分析法;53:导数的综合应用;59:不等式的解法及应用【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证lnxx1xlnx运用(1)的单调性可得lnxx1,设F(x)=xlnxx+1,x1,求出单调性,即可得到x1xlnx成立;(3)设G(x)=1+(c1)xcx,求G(x)的二次导数,判断G(x)的单调性,进而证明原不等式【解答】解:(1)函数f(x)=lnxx+1的导数为f(x)=1,由f(x)0,可得0x1;由f(x)0,可得x1即有f(x)的增区间为(0,1);减区间为(1,+);(2)证明:当x(1,+)时,1x,即为lnxx1xlnx由(1)可得f(x)=lnxx+1在(1,+)递减,可得f(x)f(1)=0,即有lnxx1;设F(x)=xlnxx+1,x1,F(x)=1+lnx1=lnx,当x1时,F(x)0,可得F(x)递增,即有F(x)F(1)=0,即有xlnxx1,则原不等式成立;(3)证明:设G(x)=1+(c1)xcx,则需要证明:当x(0,1)时,G(x)0(c1);G(x)=c1cxlnc,G(x)=(lnc)2cx0,G(x)在(0,1)单调递减,而G(0)=c1lnc,G(1)=c1clnc,由(1)中f(x)的单调性,可得G(0)=c1lnc0,由(2)可得G(1)=c1clnc=c(1lnc)10,t(0,1),使得G(t)=0,即x(0,t)时,G(x)0,x(t,1)时,G(x)0;即G(x)在(0,t)递增,在(t,1)递减;又因为:G(0)=G(1)=0,x(0,1)时G(x)0成立,不等式得证;即c1,当x(0,1)时,1+(c1)xcx【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22(10分)如图,O中的中点为P,弦PC,PD分别交AB于E,F两点(1)若PFB=2PCD,求PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OGCD【考点】NC:与圆有关的比例线段菁优网版权所有【专题】35:转化思想;49:综合法;5M:推理和证明【分析】(1)连接PA,PB,BC,设PEB=1,PCB=2,ABC=3,PBA=4,PAB=5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证【解答】(1)解:连接PB,BC,设PEB=1,PCB=2,ABC=3,PBA=4,PAB=5,由O中的中点为P,可得4=5,在EBC中,1=2+3,又D=3+4,2=5,即有2=4,则D=1,则四点E,C,D,F共圆,可得EFD+PCD=180,由PFB=EFD=2PCD,即有3PCD=180,可得PCD=60;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OGCD【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题选修4-4:坐标系与参数方程23在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin(+)=2(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程菁优网版权所有【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=cos,y=sin,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y4=0的平行线与椭圆相切时,|PQ|取得最值设与直线x+y4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标另外:设P(cos,sin),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标【解答】解:(1)曲线C1的参数方程为(为参数),移项后两边平方可得+y2=cos2+sin2=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为sin(+)=2,即有(sin+cos)=2,由x=cos,y=sin,可得x+y4=0,即有C2的直角坐标方程为直线x+y4=0;(2)由题意可得当直线x+y4=0的平行线与椭圆相切时,|PQ|取得最值设与直线x+y4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t23=0,由直线与椭圆相切,可得=36t216(3t23)=0,解得t=2,显然t=2时,|PQ|取得最小值,即有|PQ|=,此时4x212x+9=0,解得x=,即为P(,)另解:设P(cos,sin),由P到直线的距离为d=,当sin(+)=1时,|PQ|的最小值为,此时可取=,即有P(,)【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题选修4-5:不等式选讲24已知函数f(x)=|2xa|+a(1)当a=2时,求不等式f(x)6的解集;(2)设函数g(x)=|2x1|,当xR时,f(x)+g(x)3,求a的取值范围【考点】R5:绝对值不等式的解法菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用【分析】(1)当a=2时,由已知得|2x2|+26,由此能求出不等式f(x)6的解集(2)由f(x)+g(x)=|2x1|+|2xa|+a3,得|x|+|x|,由此能求出a的取值范围【解答】解:(1)当a=2时,f(x)=|2x2|+2,f(x)6,|2x2|+26,|2x2|4,|x1|2,2x12,解得1x3,不等式f(x)6的解集为x|1x3(2)g(x)=|2x1|,f(x)+g(x)=|2x1|+|2xa|+a3,2|x|+2|x|+a3,|x|+|x|,当a3时,成立,当a3时,|x|+|x|a1|0,(a1)2(3a)2,解得2a3,a的取值范围是2,+)【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用第17页(共17页)2017年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A=1,2,3,4,B=2,4,6,8,则AB中元素的个数为()A1B2C3D42(5分)复平面内表示复数z=i(2+i)的点位于()A第一象限B第二象限C第三象限D第四象限3(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4(5分)已知sincos=,则sin2=()ABCD5(5分)设x,y满足约束条件则z=xy的取值范围是()A3,0B3,2C0,2D0,36(5分)函数f(x)=sin(x+)+cos(x)的最大值为()AB1CD7(5分)函数y=1+x+的部分图象大致为()ABCD8(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A5B4C3D29(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABCD10(5分)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1BA1EBDCA1EBC1DA1EAC11(5分)已知椭圆C:=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay+2ab=0相切,则C的离心率为()ABCD12(5分)已知函数f(x)=x22x+a(ex1+ex+1)有唯一零点,则a=()ABCD1二、填空题13(5分)已知向量=(2,3),=(3,m),且,则m= 14(5分)双曲线(a0)的一条渐近线方程为y=x,则a= 15(5分)ABC的内角A,B,C的对边分别为a,b,c,已知C=60,b=,c=3,则A= 16(5分)设函数f(x)=,则满足f(x)+f(x)1的x的取值范围是 三、解答题17(12分)设数列an满足a1+3a2+(2n1)an=2n(1)求an的通项公式;(2)求数列的前n项和18(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率19(12分)如图四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比20(12分)在直角坐标系xOy中,曲线y=x2+mx2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值21(12分)已知函数f(x)=lnx+ax2+(2a+1)x(1)讨论f(x)的单调性;(2)当a0时,证明f(x)2选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数)设l1与l2的交点为P,当k变化时,P的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos+sin)=0,M为l3与C的交点,求M的极径选修4-5:不等式选讲23已知函数f(x)=|x+1|x2|(1)求不等式f(x)1的解集;(2)若不等式f(x)x2x+m的解集非空,求m的取值范围2017年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A=1,2,3,4,B=2,4,6,8,则AB中元素的个数为()A1B2C3D4【考点】1E:交集及其运算菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合【分析】利用交集定义先求出AB,由此能求出AB中元素的个数【解答】解:集合A=1,2,3,4,B=2,4,6,8,AB=2,4,AB中元素的个数为2故选:B【点评】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用2(5分)复平面内表示复数z=i(2+i)的点位于()A第一象限B第二象限C第三象限D第四象限【考点】A4:复数的代数表示法及其几何意义菁优网版权所有【专题】35:转化思想;5N:数系的扩充和复数【分析】利用复数的运算法则、几何意义即可得出【解答】解:z=i(2+i)=2i1对应的点(1,2)位于第三象限故选:C【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题3(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【考点】2K:命题的真假判断与应用;B9:频率分布折线图、密度曲线菁优网版权所有【专题】27:图表型;2A:探究型;5I:概率与统计【分析】根据已知中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A【点评】本题考查的知识点是数据的分析,命题的真假判断与应用,难度不大,属于基础题4(5分)已知sincos=,则sin2=()ABCD【考点】GS:二倍角的三角函数菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值【分析】由条件,两边平方,根据二倍角公式和平方关系即可求出【解答】解:sincos=,(sincos)2=12sincos=1sin2=,sin2=,故选:A【点评】本题考查了二倍角公式,属于基础题5(5分)设x,y满足约束条件则z=xy的取值范围是()A3,0B3,2C0,2D0,3【考点】7C:简单线性规划菁优网版权所有【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可【解答】解:x,y满足约束条件的可行域如图:目标函数z=xy,经过可行域的A,B时,目标函数取得最值,由解得A(0,3),由解得B(2,0),目标函数的最大值为:2,最小值为:3,目标函数的取值范围:3,2故选:B【点评】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键6(5分)函数f(x)=sin(x+)+cos(x)的最大值为()AB1CD【考点】HW:三角函数的最值菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;57:三角函数的图像与性质【分析】利用诱导公式化简函数的解析式,通过正弦函数的最值求解即可【解答】解:函数f(x)=sin(x+)+cos(x)=sin(x+)+cos(x+)=sin(x+)+sin(x+)=sin(x+)故选:A【点评】本题考查诱导公式的应用,三角函数的最值,正弦函数的有界性,考查计算能力7(5分)函数y=1+x+的部分图象大致为()ABCD【考点】3A:函数的图象与图象的变换菁优网版权所有【专题】11:计算题;31:数形结合;35:转化思想;51:函数的性质及应用【分析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x0+,f(x)0,排除A、C,当x=时,y=1+,排除B故选:D【点评】本题考查函数的图象的判断,函数的奇偶性以及特殊点是常用方法8(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A5B4C3D2【考点】EF:程序框图菁优网版权所有【专题】11:计算题;39:运动思想;49:综合法;5K:算法和程序框图【分析】通过模拟程序,可得到S的取值情况,进而可得结论【解答】解:由题可知初始值t=1,M=100,S=0,要使输出S的值小于91,应满足“tN”,则进入循环体,从而S=100,M=10,t=2,要使输出S的值小于91,应接着满足“tN”,则进入循环体,从而S=90,M=1,t=3,要使输出S的值小于91,应不满足“tN”,跳出循环体,此时N的最小值为2,故选:D【点评】本题考查程序框图,判断出什么时候跳出循环体是解决本题的关键,注意解题方法的积累,属于中档题9(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABCD【考点】LF:棱柱、棱锥、棱台的体积;LR:球内接多面体菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5Q:立体几何【分析】推导出该圆柱底面圆周半径r=,由此能求出该圆柱的体积【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,该圆柱底面圆周半径r=,该圆柱的体积:V=Sh=故选:B【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题10(5分)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1BA1EBDCA1EBC1DA1EAC【考点】LO:空间中直线与直线之间的位置关系菁优网版权所有【专题】11:计算题;31:数形结合;41:向量法;5G:空间角【分析】法一:连B1C,推导出BC1B1C,A1B1BC1,从而BC1平面A1ECB1,由此得到A1EBC1法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果【解答】解:法一:连B1C,由题意得BC1B1C,A1B1平面B1BCC1,且BC1平面B1BCC1,A1B1BC1,A1B1B1C=B1,BC1平面A1ECB1,A1E平面A1ECB1,A1EBC1故选:C法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),=(2,1,2),=(0,2,2),=(2,2,0),=(2,0,2),=(2,2,0),=2,=2,=0,=6,A1EBC1故选:C【点评】本题考查线线垂直的判断,是中档题,解题时要认真审题,注意向量法的合理运用11(5分)已知椭圆C:=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay+2ab=0相切,则C的离心率为()ABCD【考点】K4:椭圆的性质菁优网版权所有【专题】34:方程思想;5B:直线与圆;5D:圆锥曲线的定义、性质与方程【分析】以线段A1A2为直径的圆与直线bxay+2ab=0相切,可得原点到直线的距离=a,化简即可得出【解答】解:以线段A1A2为直径的圆与直线bxay+2ab=0相切,原点到直线的距离=a,化为:a2=3b2椭圆C的离心率e=故选:A【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题12(5分)已知函数f(x)=x22x+a(ex1+ex+1)有唯一零点,则a=()ABCD1【考点】52:函数零点的判定定理菁优网版权所有【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用【分析】通过转化可知问题等价于函数y=1(x1)2的图象与y=a(ex1+)的图象只有一个交点求a的值分a=0、a0、a0三种情况,结合函数的单调性分析可得结论【解答】解:因为f(x)=x22x+a(ex1+ex+1)=1+(x1)2+a(ex1+)=0,所以函数f(x)有唯一零点等价于方程1(x1)2=a(ex1+)有唯一解,等价于函数y=1(x1)2的图象与y=a(ex1+)的图象只有一个交点当a=0时,f(x)=x22x1,此时有两个零点,矛盾;当a0时,由于y=1(x1)2在(,1)上递增、在(1,+)上递减,且y=a(ex1+)在(,1)上递增、在(1,+)上递减,所以函数y=1(x1)2的图象的最高点为A(1,1),y=a(ex1+)的图象的最高点为B(1,2a),由于2a01,此时函数y=1(x1)2的图象与y=a(ex1+)的图象有两个交点,矛盾;当a0时,由于y=1(x1)2在(,1)上递增、在(1,+)上递减,且y=a(ex1+)在(,1)上递减、在(1,+)上递增,所以函数y=1(x1)2的图象的最高点为A(1,1),y=a(ex1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C【点评】本题考查函数零点的判定定理,考查函数的单调性,考查运算求解能力,考查数形结合能力,考查转化与化归思想,考查分类讨论的思想,注意解题方法的积累,属于难题二、填空题13(5分)已知向量=(2,3),=(3,m),且,则m=2【考点】9T:数量积判断两个平面向量的垂直关系菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解【解答】解:向量=(2,3),=(3,m),且,=6+3m=0,解得m=2故答案为:2【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量数量积坐标运算法则和向量垂直的性质的合理运用14(5分)双曲线(a0)的一条渐近线方程为y=x,则a=5【考点】KC:双曲线的性质菁优网版权所有【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程【分析】利用双曲线方程,求出渐近线方程,求解a即可【解答】解:双曲线(a0)的一条渐近线方程为y=x,可得,解得a=5故答案为:5【点评】本题考查双曲线的简单性质的应用,考查计算能力15(5分)ABC的内角A,B,C的对边分别为a,b,c,已知C=60,b=,c=3,则A=75【考点】HP:正弦定理;HR:余弦定理菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;58:解三角形【分析】根据正弦定理和三角形的内角和计算即可【解答】解:根据正弦定理可得=,C=60,b=,c=3,sinB=,bc,B=45,A=180BC=1804560=75,故答案为:75【点评】本题考查了三角形的内角和以及正弦定理,属于基础题16(5分)设函数f(x)=,则满足f(x)+f(x)1的x的取值范围是(,+)【考点】3T:函数的值菁优网版权所有【专题】32:分类讨论;4R:转化法;51:函数的性质及应用【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可【解答】解:若x0,则x,则f(x)+f(x)1等价为x+1+x+11,即2x,则x,此时x0,当x0时,f(x)=2x1,x,当x0即x时,满足f(x)+f(x)1恒成立,当0x,即x0时,f(x)=x+1=x+,此时f(x)+f(x)1恒成立,综上x,故答案为:(,+)【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键三、解答题17(12分)设数列an满足a1+3a2+(2n1)an=2n(1)求an的通项公式;(2)求数列的前n项和【考点】8E:数列的求和;8H:数列递推式菁优网版权所有【专题】34:方程思想;35:转化思想;54:等差数列与等比数列【分析】(1)利用数列递推关系即可得出(2)=利用裂项求和方法即可得出【解答】解:(1)数列an满足a1+3a2+(2n1)an=2nn2时,a1+3a2+(2n3)an1=2(n1)(2n1)an=2an=当n=1时,a1=2,上式也成立an=(2)=数列的前n项和=+=1=【点评】本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题18(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计【分析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率(2)当温度大于等于25C时,需求量为500,求出Y=900元;当温度在20,25)C时,需求量为300,求出Y=300元;当温度低于20C时,需求量为200,求出Y=100元,从而当温度大于等于20时,Y0,由此能估计估计Y大于零的概率【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,六月份这种酸奶一天的需求量不超过300瓶的概率p=(2)当温度大于等于25C时,需求量为500,Y=4502=900元,当温度在20,25)C时,需求量为300,Y=3002(450300)2=300元,当温度低于20C时,需求量为200,Y=400(450200)2=100元,当温度大于等于20时,Y0,由前三年六月份各天的最高气温数据,得当温度大于等于20C的天数有:90(2+16)=72,估计Y大于零的概率P=【点评】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题19(12分)如图四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直菁优网版权所有【专题】11:计算题;31:数形结合;41:向量法;5F:空间位置关系与距离【分析】(1)取AC中点O,连结DO、BO,推导出DOAC,BOAC,从而AC平面BDO,由此能证明ACBD(2)法一:连结OE,设AD=CD=,则OC=OA=1,由余弦定理求出BE=1,由BE=ED,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,SDCE=SBCE,由此能求出四面体ABCE与四面体ACDE的体积比法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,BO=,推导出BODO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,由AEEC,求出DE=BE,由此能求出四面体ABCE与四面体ACDE的体积比【解答】证明:(1)取AC中点O,连结DO、BO,ABC是正三角形,AD=CD,DOAC,BOAC,DOBO=O,AC平面BDO,BD平面BDO,ACBD解:(2)法一:连结OE,由(1)知AC平面OBD,OE平面OBD,OEAC,设AD=CD=,则OC=OA=1,EC=EA,AECE,AC=2,EC2+EA2=AC2,EC=EA=CD,E是线段AC垂直平分线上的点,EC=EA=CD=,由余弦定理得:cosCBD=,即,解得BE=1或BE=2,BEBD=2,BE=1,BE=ED,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,BE=ED,SDCE=SBCE,四面体ABCE与四面体ACDE的体积比为1法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,BO=,BO2+DO2=BD2,BODO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,则C(1,0,0),D(0,0,1),B(0,0),A(1,0,0),设E(a,b,c),(01),则(a,b,c1)=(0,1),解得E(0,1),=(1,),=(1,),AEEC,=1+32+(1)2=0,由0,1,解得,DE=BE,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,DE=BE,SDCE=SBCE,四面体ABCE与四面体ACDE的体积比为1【点评】本题考查线线垂直的证明,考查两个四面体的体积之比的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题20(12分)在直角坐标系xOy中,曲线y=x2+mx2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值【考点】KJ:圆与圆锥曲线的综合菁优网版权所有【专题】34:方程思想;43:待定系数法;5B:直线与圆【分析】(1)设曲线y=x2+mx2与x轴交于A(x1,0),B(x2,0),运用韦达定理,再假设ACBC,运用直线的斜率之积为1,即可判断是否存在这样的情况;(2)设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E24F0),由题意可得D=m,F=2,代入(0,1),可得E=1,再令x=0,即可得到圆在y轴的交点,进而得到弦长为定值【解答】解:(1)曲线y=x2+mx2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=2,若ACBC,则kACkBC=1,即有=1,即为x1x2=1这与x1x2=2矛盾,故不出现ACBC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:2019年全国统一高考数学(文科)(新课标ⅲ)
链接地址:https://www.renrendoc.com/p-67662187.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!