2.5.4三角形的内切圆_第1页
2.5.4三角形的内切圆_第2页
2.5.4三角形的内切圆_第3页
2.5.4三角形的内切圆_第4页
2.5.4三角形的内切圆_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 5直线与圆的位置关系 第2章圆 导入新课 讲授新课 当堂练习 课堂小结 2 5 4三角形的内切圆 1 了解有关三角形的内切圆和三角形内心的概念 重点 2 能运用三角形内切圆 内心的知识进行有关的计算 难点 导入新课 情境引入 如图是一块三角形木料 木工师傅要从中裁下一块圆形用料 怎样才能使裁下的圆的面积尽可能大呢 下面有四种方案 请选择最佳方案 方案一 方案二 方案三 方案四 讲授新课 合作探究 猜想 方案二中的这个圆应当与三角形的三条边都相 方案二 切 O 画一个圆关键是定圆心和半径 如何画一个圆与三角形的三条边都相切 如果这个圆与 ABC的三条边都相切 那么圆心O到三条边的距离都等于 从而这些距离相等 O 半径 到一个角的两边距离相等的点一定在这个角的平分线上 因此圆心O是 A的 与 B的 的 点 O 平分线 平分线 交 已知 ABC 求作 和 ABC的各边都相切的圆 作法 1 作 B和 C的平分线BM和CN 交点为O 2 过点O作OD BC 垂足为D 3 以O为圆心 OD为半径作圆O O就是所求的圆 做一做 观察与思考 与 ABC的三条边都相切的圆有几个 因为 B和 C的平分线的交点只有一个 并且交点O到 ABC三边的距离相等且唯一 所以与 ABC三边都相切的圆有且只有一个 知识要点 A B C N F 外切三角形 内切圆 内心 1 与三角形各边都相切的圆叫做这个三角形的内切圆 2 三角形内切圆的圆心叫做这个三角形的内心 3 这个三角形叫做这个圆的外切三角形 4 三角形的内心就是三角形三条角平分线的交点 三角形的内心到三角形的三边的距离相等 三角形三边中垂线的交点 1 OA OB OC2 外心不一定在三角形的内部 三角形三条角平分线的交点 1 到三边的距离相等 2 OA OB OC分别平分 BAC ABC ACB3 内心在三角形内部 填一填 例1 ABC中 O是 ABC的内切圆 A 70 求 BOC的度数 解 A 70 ABC ACB 180 A 110 O是 ABC的内切圆 BO CO分别是 ABC和 ACB的平分线 即 OBC ABC OCB ACB 典例精析 BOC 180 OBC OCB 180 ABC ACB 180 110 125 例2 ABC的内切圆 O与BC CA AB分别相切于点D E F 且AB 13cm BC 14cm CA 9cm 求AF BD CE的长 解 设AF xcm 则AE xcm CE CD AC AE 9 x cm BF BD AB AF 13 x cm 想一想 图中你能找出哪些相等的线段 理由是什么 A C B 由BD CD BC 可得 13 x 9 x 14 AF 4cm BD 9cm CE 5cm 方法小结 关键是熟练运用切线长定理 将相等线段转化集中到某条边上 从而建立方程 解得x 4 A C B 例3如图 Rt ABC中 C 90 BC a AC b AB c O为Rt ABC的内切圆 求 Rt ABC的内切圆的半径r O与Rt ABC的三边都相切 AD AF BE BF CE CD 解 设Rt ABC的内切圆与三边相切于D E F 连接OD OE OF 则OD AC OE BC OF AB B A C E D F O 设AD x BE y CE r B A C E D F O 设Rt ABC的直角边为a b 斜边为c 则Rt ABC的内切圆的半径r 或r 后面习题中证明 当堂练习 1 三角形的内心是三角形三边中垂线的交点 2 三角形的内心是三角形三个角平分线的交点 3 三角形的内心到三角形各个顶点的距离相等 4 三角形的内心到三角形各边的距离相等 5 三角形的内心一定在三角形的内部 6 三角形的内心与一顶点的连线平分该顶点处的内角 错 对 对 对 错 对 1 判断对错 110 A 第2题 3 ABC的内切圆 O与三边分别切于D E F三点 如图 已知AF 3 BD CE 12 则 ABC的周长是 30 B D E F O C A 4 如图 ABC的内切圆的半径为r ABC的周长为l 求 ABC的面积S 解 设 ABC的内切圆与三边相切于D E F 连接OA OB OC OD OE OF 则OD AB OE BC OF AC S ABC S AOB S BOC S AOC AB OD BC OE AC OF l r 5 如图 已知E是 ABC的内心 A的平分线交BC于点F 且与 ABC的外接圆相交于点D 1 证明 E是 ABC的内心 ABE CBE BAD CAD 又 CBD CAD BAD CBD CBE CBD ABE BAD 即 DBE DEB 故BD ED 1 求证 BD ED 2 若AD 8cm DF FA 1 3 求DE的长 2 解 AD 8cm DF FA 1 3 DF AD 8 2 cm CBD BAD D D BDF ADB BD2 AD DF 8 2 16 BD 4cm 又 BD DE DE 4cm 拓展提升 6 直角三角形的两直角边分别是3cm 4cm 试问 1 它的外接圆半径是cm 内切圆半径是cm 2 若移动点O的位置 使 O保持与 ABC的边AC BC都相切 求 O的半径r的取值范围 5 1 解 设BC 3cm 由题意可知与BC AC相切的最大圆与BC AC的切点分别为B D 连接OB OD 则四边形BODC为正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论