2019-2020学年攀枝花市高一上学期期末数学试题(解析版)_第1页
2019-2020学年攀枝花市高一上学期期末数学试题(解析版)_第2页
2019-2020学年攀枝花市高一上学期期末数学试题(解析版)_第3页
2019-2020学年攀枝花市高一上学期期末数学试题(解析版)_第4页
2019-2020学年攀枝花市高一上学期期末数学试题(解析版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019-2020学年四川省攀枝花市高一上学期期末数学试题一、单选题1若集合,则( )ABCD【答案】D【解析】集合,所以.故选D.2函数的定义域为( )ABCD【答案】A【解析】根据偶次被开方数大于等于零,真数大于零,列出不等式组即可求出【详解】依题意有,解得,故选:A【点睛】本题主要考查函数定义域的求法,属于基础题3与事件“我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”吻合得最好的图象是( )ABCD【答案】B【解析】根据运动情景,比照图象,可以得出【详解】根据题意可知,加速表示离开家的距离随时间的变化越来越快,所以B符合故选:B【点睛】本题主要考查函数图象的识别,理解图象的变化所代表的物理意义是解题的关键,属于基础题4若,则( )A2B4CD【答案】C【解析】根据对数式与指数式的互化,即可求出【详解】依题意可得,又因为且,所以故选:C【点睛】本题主要考查对数式与指数式的互化,属于基础题5的值是( )ABCD【答案】B【解析】根据诱导公式即可求出【详解】故选:B【点睛】本题主要考查利用诱导公式求值,属于基础题6已知,则( )ABCD【答案】C【解析】利用对数函数,指数函数,余弦函数的单调性求出的范围,即可比较出大小【详解】因为,所以,故选:C【点睛】本题主要考查利用对数函数,指数函数,余弦函数的单调性比较大小,属于基础题7已知,则( )ABCD【答案】D【解析】令,所以,则即可求出【详解】令,所以,则故选:D【点睛】本题主要考查利用诱导公式求值,属于基础题8函数的部分图象如图所示,则( )A,B,C,D,【答案】A【解析】根据图象可知,的最小值为,最大值为,即可求出,再根据以及,即可求出【详解】设,由图可知,或,解得,又,所以,或(舍去),而,故故选:A【点睛】本题主要考查图象的变换以及根据图象求解析式,属于基础题9函数(且)是上的增函数,则的取值范围是( )ABCD【答案】B【解析】根据题意可知, 在上单调递增,在上递增,且,即可求出【详解】依题意可得,解得故选:B【点睛】本题主要考查根据分段函数的单调性求参数的范围,属于基础题10已知,对于值域内的所有实数,不等式恒成立,则的取值范围是( )ABCD【答案】A【解析】先求出值域即得到实数的范围,再将变形为,设,所以解不等式组 即可求出【详解】因为,所以,即变形为,设所以在上恒成立,故,即 解得,或故选:A【点睛】本题主要考查利用余弦函数单调性求值域,一元二次不等式的的解法,不等式恒成立问题的解法,以及更换主元法的应用,意在考查学生的转化能力和数学运算能力,属于中档题11已知是定义在上的单调函数,满足,则函数的零点所在区间为( )ABCD【答案】C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,故,即因为,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题二、填空题12若幂函数的图象过点 ,则实数的值为_ .【答案】【解析】由幂函数的图象过点 ,即 即答案为.13圆心角为,半径为的扇形的面积为_ .【答案】9cm2【解析】扇形的圆心角为 2,半径为,扇形的弧长为:,所以扇形的面积为 故答案为14若,则_.【答案】【解析】根据二倍角公式和平方关系,即可求出【详解】故答案为:【点睛】本题主要考查二倍角公式和平方关系的应用,属于基础题15已知定义在上的函数满足:的图象关于点对称,且.当时,则_.【答案】【解析】依题意可知,的图象关于点对称,所以函数为奇函数,再依题目条件将转化到已知区间上的函数值,即可求出【详解】依题意可知,的图象关于点对称,所以函数为奇函数,又,所以即,故故答案为:【点睛】本题主要考查函数性质的应用,对数运算性质,对数运算法则,换底公式的应用,意在考查学生的转化能力和数学运算能力,属于中档题三、解答题16已知集合,.()当时,求;()若,求实数的取值范围.【答案】() ()【解析】()根据不等式的解法求出集合,再根据补集和交集的运算即可求出;()根据子集的概念,列出不等式即可求出【详解】()由,得,从而,又;.(),又,.【点睛】本题主要考查不等式的解法,交集和补集的运算,以及由子集关系求参数的范围,意在考查学生的数学运算能力,属于基础题17()已知,且为第四象限角,求的值;()计算:.【答案】()()【解析】()根据平方关系和为第四象限角求出,再根据诱导公式将所求式子化简即可求出;()由指数幂的运算性质以及对数的运算性质即可求出【详解】(),且为第四象限角,.()原式.【点睛】本题主要考查平方关系和诱导公式的应用,以及指数幂的运算性质和对数的运算性质的应用,意在考查学生的数学运算能力,属于基础题18已知函数是定义在上的偶函数,且.()求实数,的值;()用定义法证明函数在上是增函数;()解关于的不等式.【答案】(),.()证明见解析()【解析】()根据偶函数的定义以及,即可求出;()根据单调性的定义,按照取值,作差,变形,定号,作出判断的步骤即可证明;()根据偶函数的性质,可将变形为,再由在上递增,得到,即可解出【详解】()因为函数是定义在上的偶函数,综上,.()因为,设,所以.又,即,在上为增函数.(),在上单调递增.是定义在上的偶函数,故不等式的解集为【点睛】本题主要考查函数的性质应用,绝对值不等式的解法,以及利用定义证明函数的单调性,意在考查学生的数学运算能力和转化能力,属于基础题19已知函数.()求函数的图象的对称中心及其在区间的值域;()求函数在上的单调递增区间.【答案】(1)对称中心为,值域为()单调递增区间为和【解析】()根据二倍角公式和辅助角公式化简的解析式,可得,再令,即可求出的图象的对称中心,然后根据,由三角函数的单调性即可求出在区间的值域;()先用代换法求出函数的单调递增区间,然后与取交集,即可求出【详解】(1).由,所以函数的图象的对称中心为;,从而的值域为.()由,解得,所以函数的单调递增区间为.当时为;当时为,与定义域的交集为和.函数在上的单调递增区间为和.【点睛】本题主要考查二倍角公式,辅助角公式的应用,三角函数的图象和性质的应用,以及正弦型函数在闭区间上的单调区间求法,意在考查学生的数学运算能力和转化能力,属于基础题20国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)【答案】(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值44.42毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以合法驾车.【解析】【详解】(1)由图可知,当函数取得最大值时,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值44.42毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,故喝1瓶啤酒后需6小时后才可以合法驾车.21函数,关于的不等式的解集为.()求、的值;()设.(i)若不等式在上恒成立,求实数的取值范围;(ii)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).【答案】() ()(i)(ii)【解析】()根据三个“二次”的关系可知,的两根为-1和3,再根据韦达定理即可求出;()(i)由()中求出的解析式可将不等式化简成,换元,即只需求在上的最小值,即可求出实数的取值范围;(ii)换元,令,则函数有三个不同的零点,等价于在有两个零点,再根据函数与方程思想,以及二次函数的有关性质即可求出【详解】()因为的解集为,即方程的两根为-1和3,由韦达定理可知,解得.()(i)由()可得:,所以不等式在上恒成立,等价于在上恒成立,令,因为,所以,则有在恒成立,令,则,所以,即,所以实数的取值范围为.(ii)因为,令,由题意可知,令,则函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论