高考数学题型全归纳:正余弦定理常见解题类型典型例题(含答案).doc_第1页
高考数学题型全归纳:正余弦定理常见解题类型典型例题(含答案).doc_第2页
高考数学题型全归纳:正余弦定理常见解题类型典型例题(含答案).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正余弦定理常见解题类型1 解三角形正弦定理常用于解决以下两类解斜三角形的问题:已知两角和任一边,求其他两边和一角;已知两边和其中一边的对角,求另一边的对角及其他的边和角余弦定理常用于解决以下两类解斜三角形的问题:已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角例1已知在中,解此三角形解:由余弦定理得,从而有又,得,或或因此,或,注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做2 判断三角形的形状利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或边的关系,一般的,利用正弦定理的公式,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理:;利用余弦定理公式,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题例2 在中,若,判定三角形的形状解:由正弦定理,为外接圆的半径,可将原式化为,即,即,故为直角三角形3 求三角形中边或角的范围例3 在中,若,求的取值范围解: ,可得又,故点评:此题的解答容易忽视隐含条件的范围,从而导致结果错误因此,解此类问题应注意挖掘一切隐含条件4 三角形中的恒等式证明根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式例4 在中,若,求证:证明:,又,而是三角形内角,一般的,能用正弦定理解的三角形问题,也可用余弦定理去解在具体的解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论