湖北八校高三数学第二次联合考试理_第1页
湖北八校高三数学第二次联合考试理_第2页
湖北八校高三数学第二次联合考试理_第3页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省八校2019届高三数学第二次联合考试试题 理(含解析)一、选择题(本大题共12小题,共60.0分)1.设集合,则A. B. C. D. 【答案】D【解析】【分析】:化简集合,根据交集的定义计算【详解】:因为集合,化简,所以,故选D【点睛】:研究集合问题,一定要抓住元素,看元素应满足的属性研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合2.若复数z满足为虚数单位,为z的共轭复数,则A. B. 2C. D. 3【答案】A【解析】分析:把已知等式变形,利用复数代数形式的乘除运算化简,结合复数模的公式求解.详解:由,得,则,则,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.在矩形ABCD中,若向该矩形内随机投一点P,那么使得与的面积都不小于2的概率为A. B. C. D. 【答案】D【解析】,由题意知本题是一个几何概型的概率,以AB为底边,要使面积不小于2,由于,则三角形的高要h1,同样,P点到AD的距离要不小于,满足条件的P的区域如图,其表示的区域为图中阴影部分,它的面积是,使得ABP与ADP的面积都不小于2的概率为:.故选D.4.已知函数为偶函数,且在上单调递减,则的解集为A. B. C. D. 【答案】B【解析】【分析】根据函数奇偶性的定义,求出a,b的关系,结合函数的单调性判断a的符号,然后根据不等式的解法进行求解即可【详解】f(x)=(x-1)(ax+b)=ax2+(b-a)x-b为偶函数,f(-x)=f(x),则ax2-(b-a)x-b=ax2+(b-a)x-b,即-(b-a)=b-a,得b-a=0,得b=a,则f(x)=ax2-a=a(x2-1),若f(x)在(0,+)单调递减,则a0,由f(3-x)0得a(3-x)2-1)0,即(3-x)2-10,得x4或x2,即不等式的解集为(-,2)(4,+),故选B【点睛】本题主要考查不等式的求解,根据函数奇偶性的性质求出a,b的关系是解决本题的关键5.已知双曲线的离心率为,则a的值为A. 1B. C. 1或D. 【答案】C【解析】分析:可用排除法,验证与是否符合题意即可得结果.详解:可用排除法,当时,化为,离心率为,符合题意;当时,化为,离心率为,符合题意,的值为,故选C.点睛:用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率.6.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B. C. D. 【答案】D【解析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,即,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.7.执行如图所示的程序框图,若输入,输出的,则空白判断框内应填的条件可能是A. B. C. D. 【答案】B【解析】分析:将题中所给的程序框图模拟运行,逐步运算,结合题的条件,明确循环几次,到什么程度就会结束,从而利用相关的条件,得到其满足的式子,从而求得结果.详解:当第一次执行,返回;第二次执行,返回;第三次执行,要输出x,故满足判断框,此时,故选B.点睛:该题考查的是有关程序框图的问题,涉及到的知识点是补全程序框图,在解题的过程中,注意对框图进行模拟运行,结合题的条件,求得结果.8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数的图象,在图象的所有对称轴中,离原点最近的对称轴方程为A. B. C. D. 【答案】A【解析】分析:根据平移变换可得,根据放缩变换可得函数的解析式,结合对称轴方程求解即可.详解:将函数的图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到,再将所得图象向左平移个单位得到函数的图象,即,由,得,当时,离原点最近的对称轴方程为,故选A.点睛:本题主要考查三角函数的图象与性质,属于中档题.由 函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.9.在的展开式中,含项的系数是A. 119B. 120C. 121D. 720【答案】B【解析】分析:展开式中含项的系数是,利用组合数的运行性质计算即可.详解:的展开式中,含项的系数是,故选B.点睛:本题主要考查二项展开式定理的通项与系数以及组合式的性质,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.10.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B. 160C. D. 64【答案】A【解析】分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可, ,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.11.已知椭圆C:,直线l:与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在直线l上,则“轴”是“直线AC过线段EF中点”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:若轴,不妨设与轴交于点,过作交直线于点,由平行线的性质结合椭圆第二定义可得,进而可得结果.详解:若轴,不妨设与轴交于点,过作交直线于点,则:,两次相除得:,又由第二定义可得,为的中点, 反之,直线过线段中点,直线斜率为零,则与重合,所以“轴”是“直线过线段中点”的充分不必要条件,故选A.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.12.下列命题为真命题的个数是;A. 1B. 2C. 3D. 4【答案】C【解析】【分析】本题首先可以构造函数,然后通过导数计算出函数的单调性以及最值,然后通过对四组数字进行适当的变形,通过函数的单调性即可比较出大小。【详解】构造函数,导数为,当时,递增,时,递减,可得当时取得最大值。,由可得,故正确;,由,可得,故错误;由可推导出,即,所以,可得,故正确;,由的最大值为,故正确,综上所述,故选C。【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题。二、填空题(本大题共4小题,共20.0分)13.平面向量与的夹角为,则_【答案】. 【解析】分析:先计算,再利用向量模的公式求.详解:由题得,所以 故答案为:.点睛:(1)本题主要考查向量的模的计算,意在考查学生对这些知识的掌握水平和基本计算能力.(2)若,则.14.已知实数x,y满足约束条件,且的最小值为3,则常数_【答案】-2.【解析】分析:画出可行域,将变形为,平移直线由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为列方程求解即可.详解:画出表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为可得,解得,故答案为.点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.考虑函数与函数的图象关系,计算:_【答案】.【解析】分析:根函数与函数互为反函数,其图象关于直线对称,所以两部分阴影面积相等,利用 求解即可.详解: 函数与函数互为反函数,其图象关于直线对称,所以两部分阴影面积相等,又函数直线的交点坐标为, ,故答案为.点睛:本题主要考查反函数的性质、定积分的几何意义,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线 以及直线之间的曲边梯形面积的代数和 ,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.16.如图所示,在平面四边形ABCD中,若,为正三角形,则面积的最大值为_【答案】【解析】【分析】本题首先可以先设、,然后通过余弦定理得出以及,再然后通过正弦定理得出,最后根据解三角形面积公式即可得出结果。【详解】设,由余弦定理可得,由正弦定理可得,即,所以,故当时,面积最大,最大值为。【点睛】本题考查三角函数的相关性质,主要考查解三角形的相关公式的使用,考查推理能力与计算能力,考查化归与转化思想,体现了基础性和综合性,提高了学生的逻辑思维能力,是难题。三、解答题(本大题共7小题,共82.0分)17.若数列的前项和为,且,(1)求数列的通项公式;(2)若,令,求数列的前项和【答案】(1) 或.(2) .【解析】分析:(1),即或,或;(2) 由,可得,利用裂项相消法求和即可.详解: (1)当时,则当时,即或或(2)由,18.如图所示,四边形ABCD与BDEF均为菱形,且求证:平面BDEF;求直线AD与平面ABF所成角的正弦值【答案】(1)证明见解析.(2) .【解析】分析:(1)设与相交于点,连接,由菱形的性质可得,由等腰三角形的性质可得,利用线面垂直的判定定理可得结果;(2)先证明平面.可得,两两垂直,以,建立空间直角坐标系,求出,利用向量垂直数量积为零列方程组求出平面的法向量,由空间向量夹角余弦公式可得结果.详解:(1)设与相交于点,连接,四边形为菱形,且为中点,又,平面.(2)连接,四边形为菱形,且,为等边三角形,为中点,又,平面.,两两垂直,建立空间直角坐标系,如图所示,设,四边形为菱形,.为等边三角形,.,.设平面的法向量为,则,取,得.设直线与平面所成角为,则.点睛:本题主要考查线面垂直的证明、利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,分组的频率分布直方图如图所示根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望【答案】(1)225.6.(2) (i) ;(ii) 分布列见解析;.【解析】分析:(1)由矩形面积和为列方程可得,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市每户居民平均用电量的值;(2) (i)由正态分布的对称性可得结果;(ii)因为,则,从而可得分布列,利用二项分布的期望公式可得结果.详解:(1)由得(2)(i)(ii)因为,.所以的分布列为0123所以点睛:“求期望”,一般利用离散型随机变量的数学期望的定义求期望对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得因此,应熟记常见的典型分布的期望公式,可加快解题速度20.如图所示,圆O:,D为圆O上任意一点,过D作圆O的切线分别交直线和于E,F两点,连AF,BE交于点G,若点G形成的轨迹为曲线C记AF,BE斜率分别为,求的值并求曲线C的方程;设直线l:与曲线C有两个不同的交点P,Q,与直线交于点S,与直线交于点T,求的面积与面积的比值的最大值及取得最大值时m的值【答案】(1) ,().(2) 时,取得最大值.【解析】分析:(1)先证明,设,由 ()故曲线的方程为();(2)由,利用韦达定理、弦长公式可得,直线与直线交于点,与直线交于点,可得,利用换元法结合二次函数配方法可得结果.详解: (1)设(),易知过点的切线方程为,其中则,设,由 ()故曲线的方程为()(2),设,则,由 且,直线与直线交于点,与直线交于点,令,且则当,即,时,取得最大值.点睛:解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.21.已知函数当时,讨论函数的单调性;求函数在区间上零点的个数【答案】(1)见解析.(2) 当时,在区间上有2个零点;时,在区间上有1个零点.【解析】分析:(1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)当时,在单调递增在区间上有一个零点;当时,在单调递增,在区间上有一个零点;当时,在单调递增,在区间上有一个零点;时,时,在单调递增,在上单调递减,在区间上有一个零点;时,在区间上有零点和在区间有一个零点共两个零点.详解:(1)当时,此时在单调递增;当时,当时,恒成立,此时在单调递增;当时,令,+0-0+即在和上单调递增;在上单调递减;综上:当时,在单调递增;当时,在和上单调递增;在上单调递减;(2)由(1)知,当时,在单调递增,此时在区间上有一个零点;当时,且,在单调递增;,此时在区间上有一个零点;当时,令(负值舍去)当即时,在单调递增,此时在区间上有一个零点;当即时,若即时,在单调递增,在上单调递减,此时在区间上有一个零点;若即时,在单调递增,在上单调递减,此时在区间上有零点和在区间有一个零点共两个零点;综上:当时,在区间上有2个零点;时,在区间上有1个零点. 点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论