




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目 录 摘要 . 1 . 2 一国内外常用基金绩效评估模型简介 . 3 (一)单因素整体绩效评估模型 . 3 (二 )多因素绩效评估模型 . 5 (三 )择时能力与选股能力评估模型 . 6 (四)投资组合变动评估模型 . 9 二模型选择原因 . 10 三模型分析 . 10 (一 ) 因子的选择 . 10 (二 ) 样本与数据来源 . 11 (三 ) 变量与指标 . 11 (四 ) 模型变量的选定 . 12 四、实证结果与检验 . 13 五讨论与结论。 . 15 (一)进一步研究方向 . 15 (二)展望 . 15 参考文献 . 16 南京财经大学本科毕业论文(设计) 1 基于回归分析的封闭式基金绩效评估 统计 042 孔维陶 2070404231 摘要 : 随着基金业的发展 ,理论界对基金业绩评价方法的研究也在逐渐加深 到单因素指数和多因数指数的引进并应用 ,到 择时能力与选股能力评估模型以及 投 资组合变动评估模型等,上述模型发展到后期都用到了回归分析方法。 先介绍上述模型 及 其优缺点 利用 回归分析方法 , 确定影响我国证券投资封闭式基金超额收益率 基金投资组合中前十只股票超额收益率 持股集中度 投资风格虚拟变量 金规模虚拟变量 S;基金的上市地点 个综合交叉指标 确定影响显著的两个变量 基金的上市地点持股集中度 回归模型为: 63*可见 基金的上市地 点 额收益率负相关 。 关键字 : 绩效评估 ; 封闭式基金 ;回归分析 南京财经大学本科毕业论文(设计) 2 of of s is to of of of of to to s s 0 P); S); a I s of P a 南京财经大学本科毕业论文(设计) 3 一国内外常用基金绩效评估模型简介 (一)单因素整体绩效评估模型 1965) 、 1966) 及 1968) 的三个指数模型为代表 ,大大简化了基金整体绩效评估的复杂性 ,称为单因素整体绩效评估模型。单因素模型都是以 研究基础的。目前 ,这三种基金绩效评估模型在发达国家资本市场中运用最为流行。 M. C. (1968) 指数评估模型。 用美国 1945 1964 年间 115 个基金的年收益率资料以及 S&算的市场收益率进行了实证研究。计算公式为 : , , , , ( ) i i t f t i m t f R R R 式中效指标 : ,t 时期的收益率 ; ,i 基金在 t 时期的收益率 ; ,t 时期的无风险收益率 , i为基金投资组合所承担的系统风险。 数为绝对绩效指标 ,表示基金的投资组合收益率与相同系统风险水平下市场投资组合收益率的差异 ,当其值大于零时 ,表示基金的绩效优于市场投资组合绩效。当基金和基金之间比较时 ,数越大越好。 型奠定了基金绩效评估的理论基础 ,也 是至今为止使用最广泛的模型之一(1995 ,1997) 。但是 ,用 数评估基金整体绩效时隐含了一个假设 ,即基金的非系统风险已通过投资组合彻底地分散掉 ,因此 ,该模型只反映了收益率和系统风险因子之间的关系。如果基金并没有完全消除掉非系统风险 ,则 数可能给出错误信息。例如 ,A、 B 两种基金具有相同的平均收益率和因子 ,但基金 A 的非系统风险高于基金 B ,按照该模型 ,两种基金有相同的数 ,因而绩效相同。但实际上 ,基金 A 承担了较多的非系统 风险 ,因而 A 基金经理分散风险的能力弱于 B 基金经理 ,基金 A 的绩效应该劣于基金 B。由于该模型只反映了收益率和系统风险的关系 ,因而基金经理的市场判断能力的存在就会使值呈时变性 ,使基金绩效和市场投资组合绩效之间存在非线性关系 ,从而导 南京财经大学本科毕业论文(设计) 4 致 型评估存在统计上的偏差。 因此 , 模型中引入了二次回归项、 提出了双值市场模型 ,并利用二次回归项和随机变量项对基金经理的选股能力与市场运用中的时间选择能力进行了进一步的研究。 21J 1965) 评估模型。 数是以单位系统风险收益作为基金绩效评估指标的 ,用美国 1953 1962 年间 20 个基金 (含共同基金、信托基金与退休基金 ) 的年收益率资料 ,进行基金绩效评估的实证研究 ,计算公式为 : 式中效指标 , i 基金在样本期内的平均收益率 , i 基金在样本期内的平均风险溢酬。 数表示的是基金承受每单位系数风险所获取风险收益的大小 ,其评估方法是首先计算样本期内各种基金和市场的 数 ,然后进行比较 ,较大的 数意味着较好的绩效。 数评估法同样隐含了非系统风险已全部被消除的假设 , 在这个假设前提下 , 因为 数是单位系统风险收益 ,因此它能反映基金经理的市场调 整能力。不管市场是处于上升阶段还是下降阶段 ,较大的数总是表示较好的绩效。这是 数比 数优越之处。但是如果非系统风险没有全部消除 ,则 数和 数一样可能给出错误信息。因此 ,数模型这时同样不能评估基金经理分散和降低非系统风险的能力。 W. F. (1966) 指数评估模型。 数把资本市场线作为评估标准 ,是在对总风险进行调整基础上的基金绩效评估方式。 用美国 1954 1963 年间 34 只开放式基金的年收益率资料进行了绩效的实证研究 ,计算公式为 : 南京财经大学本科毕业论文(设计) 5 式中效指标 , i为 i 基金收益率的标准差 ,即基金投资组合所承担的总风险。当采用 数评估模型时 ,同样首先计算市场上各种基金在样本期内的 数 ,然后进行比较 ,较大的 数表示较好的绩效。数和 数一样 ,能够反映基金经理的市场调整能力。和 数不同的是 ,数只考虑系统风险 ,而 数同时考虑了系统风险和非系统风险 ,即总风险。因此 ,数还能够反映基金经理分散和降低非系统风险的能力。如果证券投资基金已完全分散了非系统风险 ,则 数和数的评估结果是一样的。在对以上三种模型的运用操作上 ,由于 数与 数均为相对绩效度量方法 ,而 数是一种在风险调整基础上的绝对绩效度量方法 ,表示在完全 的风险水平情况下 ,基金经理对证券价格的准确判断能力。 数和 数在对基金绩效评估时 ,均以系数来测定风险 ,忽略了基金投资组合中所含证券的数目 (即基金投资组合的广度 ) ,只考虑获得超额收益的大小 (即基金投资组合的深度 ) 。而在衡量基金投资组合的绩效时 ,基金投资组合的广度和深度都必须同时考虑。因此 ,就操作模型的选择上 ,数模型和 数模型对基金绩效的评估较具客观性 ,在 数 数这两种模型的选择上 ,要取决于所评估基金的类型。如果所评估的基金是属于充分分散投资的基金 ,投资组合的值能更好地反映基金的风险 ,因而 数模型是较好的选择 ;如果评估的基金是属于专门投资于某一行业的基金时 ,相应的风险指标为投资组合收益的标准差 ,所以运用 数模型比较适宜。 (二 )多因素绩效评估模型 以上以 如 :市盈率(、股票市值、账面价值比市场价值 (、及过去的收益等 进行分类 南京财经大学本科毕业论文(设计) 6 的基金组合的收益之间的差异 ,所以研究者们又用多因素模型来代替单因素模型进 行 基 金 绩 效 的 评 中 ,1987) 、993 ,1996) ,1997) 等的多因素模型最具代表性。多因素模型的一般数学表达式如下 : 1 1 2 2 3 3 .i i i i i i j j iR b I b I b I b I 式中 : 1I,2I, , 各因素值 ; 1 , i代表证券收益率中独立于各因素变化的部分。该模型有两个基本假设 : (1) 任意两种证券剩余收益i、j之间均不相关 ; (2) 任意两个因素iI、间均不相关。在 1987) 的多因素模型中 ,他们认为影响证券收益的因素为 :市场平均指数收益、股票规模、公司的账面价值比市场价值 (、市盈率 (、公司前期的销售增长等。 993 ,1996) 在 认为影响证券收益的因素除了上述因素外 ,还应包括按照行业特征分类的普通股组合收益、小盘股收益与大盘股收益之差 (、高 益与低 益之差 ,作为因素引入绩效评估模型。 1997) 在以上因素的基础上 ,引入了基金所持股票收益的韧性因素 ,即前期最好的股票与最差的股票收益之差。多因素模型虽然部分解决了单因素模型存在的问题 ,模型的解释力也有所增强 ,但在实证研究中 ,模型要求能识别所有的相关因素 ,而投资定价理论并没有明确地给出 对风险资产定价所需要的所有因素或因素的个数。所以在实证时 ,因素的选择就受到个人主观判断的影响 (。并且多因素模型仍然无法解释资产收益的实质性差别 ,绩效的评估结果对因素的选取十分敏感。正是上述的原因 ,单因素模型和多因素模型孰优孰劣 ,至今在西方国家尚无定论。 (三 )择时能力与选股能力评估模型 型无条件地采用基金的历史收益来估计期望的绩效 ,因此 ,它并未 南京财经大学本科毕业论文(设计) 7 考虑基金组合期望收益和风险的时变性。而实际上 ,如果基金经理具有市场择时能力 ,它会主动地改变组合的风险以适 应市场的变化并谋求高额的收益 ;资本资产的价值本身也可能随时间的变化而变化 ,这些原因都会使值呈现时变性。对此 , 966) ,984) 等采用 据研究者们对系数的不同假设 ,将此类模型大致分为二类。第一类称为 型 ,主要含义是将市场分为多头 (与空头 (两种形态 ,并假设基金经理在预期未来市场看好时 ,会多买入一些波动幅度较高的风险资产 ;反之 ,当基金经理预期未来市场看坏时 ,多买 进波动幅度较低的风险资产 ,而卖出波动幅度较高的风险资产 ,因此 ,多头时期与空头时期的系数应有所不同 ,因此将投资组合的系数视为二项式变量 (;另一类则视为投资组合的随机变量 (,其值随时间的变动而变动 ,以下分别介绍。 966) 的传统二次项回归模型。在证券市场回归模型中 ,他们加入一个二次项来评估证券投资基金经理择时与选股能力 ,他们认为具备择时能力的基金经理应能预测市场走势 ,在多头时 ,通过提高投资组合的 风险水平以获得较高的收益 ;在空头时则降低风险 ,因此 ,特征线不再是固定斜率的直线 ,而是一条斜率会随市场状况改变的曲线 ,回归模型为 : 2, , 1 , , 2 , , ,( ) ( )p t f t p m t f t m t f t p R R R R 式中p为选股能力指标 , 1为择时能力指标 , 2为基金投资组合所承担的系统风险 , ,t 时期的收益率 , ,误差项。 为如果2大于零 ,表示市场为多头走势 ,即,m t f 0 ,这时市场收益率大于无风险收益率。由于 2,()m t f 正数 ,因此 ,证券投资基金的风险溢酬 (,p t f 会大于市场投资组合的风险溢酬 (,m t f ;反之 ,当市场呈现空头走势时 (,m t f 0) ,证券投资基金风险溢酬的下跌幅度会小于市场投资组合风险溢酬的下跌幅度 , 南京财经大学本科毕业论文(设计) 8 这样 ,基金的风险溢酬 (,p t f 仍会大于市场投资组合风险溢酬 (,m t f ,因此 ,选择2可用于判断基金经理的择时能力。p与市场走势无关 ,它代表基金收益与系统风险相等的投资组合收益率差异 , p可以用来判断基金经理的选股能力。如果p大于零 ,表明基金经理具备选股能力 , p值越大 ,表明基金经理的选股能力越强。这里的p与 数模型的区别在于 , p已对择时能力做了调整 ,将择时能力与选股 能力明确分离。 1981) 的二项式随机变量模型。 看成二项随机变量 ,其在多头与空头市场上的值是不同的。 择时能力定义为 :基金经理预测市场收益与无风险收益之间差异大小的能力 ,然后根据这种差异 ,将资金有效率地分配于证券市场 ;具备择时能力者可以预先调整资金配置 ,以减少市场收益小于无风险收益时的损失 ,其回归模型为 : , , 1 , , 2 , , ,( ) m a x ( 0 , )p t f t p m t f t m t f t p R R R R 式 中,m a x ( 0 , )m t f 表选取零与,m t f 者的最大值。在该模型的运用上 ,可 根 据 市 场 状 况 作 出 不 同 的 变 形 , 当 市 场 状 况 良 好 时 , 则,m a x ( 0 , )m t f 0 ,模型变为 : , , 1 , , ,()p t f t p m t f t p R R ;当市场状况不佳时 ,则,型变为, , 1 2 , , ,( ) ( )p t f t p m t f t p R R 。在 特别重视基金经理的市场择时能力。当20 时 ,表示基金经理掌握了市场下跌的趋势 ,这时需要及时调整资产组合 ;如果 (12) 0 ,表示基金经理具备择时能力。 关于以上基金经理的择时能力和选股能力评估模型的运用 ,主要是针对开放型证券投资基金进行的。例如 ,968 年至 1980 年间美国116 个开放型基金月收益率进行绩效实证研究 ,结果发现有 59 个基金的 2 大于零 ,但仅有 11 个基金明显大于零 ;而对 p 进 行验定 ,仅有 3 个基金明显大于零。显示出这些基金经理并不具备市场择时能力与选股能力。 (四)投资组合变动评估模型 993) 等提出了投资组合变动法 (,此法主要是依据事件研究 (的评估方法 , 计算事件的研究期间 (与后续期间 (资产收益的差异 ,其基本观点是掌握证券市场投资信息的基金经理会持有较高收益的资产 ,并将这些资产进 行投资组合 ,该投资组合的绩效比其它投资组合的绩效更好 ,模型为 : , , , 1111 ()t i t i W 式中, ,1 t - 1 时期 ,模型以投资组合的持股权数 (的变动来衡量基 金绩效。 以上的模型均为回归模型 ,这儿 我们运用时间序列分析中的 T - 法 , 对2007 年 9 月 30 日至 2007 年 12 月 29 日 _在沪市和深市上市的所有证券投资基金每周公布的基金单位净值进行了研究 ,本文以下将主要分析中国证券投资基金的绩效来源 , 第二部分说明研究方法、样本数据及分析模型 ; 第三部分进行逐步回归分析 , 并给出检验结果 . 南京财经大学本科毕业论文(设计) 10 二模型选择原因 以上模型 单因素指数模型、多因素绩效评估模型、择时能力与选股能力评估模型、投资组合变动评估模型等,这些模型发展到后期都逐渐建立采用回 归分析方法。 1987) 、 993 ,1996) ,1997) 等的多因素模型。以及 基金整体绩效评 估 模 型 进 行 了 改 进 , 其 所 建 立 的 回 归 模 型 为 : , , 1 , , 2 , , ,m i n ( 0 , ) m a x ( )p t f t p m t f t m t f t p R R R R 等,都采用了回归模型对基金绩效加以评估。研究给我很大的启示,是选择回归模型的原因。 三模型分析 (一 ) 因子的选择 一般认为 , 证券投资基金绩效高的主要原因在于基 金经理的投资能力比较高 , 996) 认为人们持有基金的原因包括专业选股能力、风险分散优势、低交易成本和客户服务 ,但通过分析得出结论 : 开放式基金的专业选股能力并没有得到合理的定价。 W 2000) 在 et (1997) 的基础上 , 将影响基金绩效的因素分解为持股收益 (根据时机调整投资组合的收益(m 平均投资类型收益 (A 和执行成本 (t co 四 个方面。 2001) 用因子分析和聚类分析的方法找到了显著解释基金收益率的第五个因子和第六个因子 , 而且发现再增加因子对于模型的解释力没有显著的提高。在借鉴国外模型的基础上 ,考虑到了我国新兴证券市场的一些特点。比如基金的规模可能会影响基金的绩效 , 因为基金经理在我国不规范的证券市场中经常会采取一些不规范的操作手法 , 资金量的大小往往会影响他们的操作空间 ; 又如深沪两市交易的基金的绩效是否会因为交易地点的不同而有显著差异 ? 再如 1999 年 6 月以后设立的基金在招募书中都披露了不同的投资风格 , 这个因素是否影响基金的绩效呢 ?综合以上因素 , 我们用我国证券投资基金的绩效对基 南京财经大学本科毕业论文(设计) 11 金选股能力、持股集中度、基金规模、基金投资风格、基金上市地点五个因素及相互的交叉影响进行了横截面分析。 (二 ) 样本与数据来源 (1)净值数据来自全景网络和中国基金网 , (2)投资组合数据来自中国证券报 ; (3)基金基本情况数据来自中国证监会网站 , 其中基金投资风格数据来自全景网络。 (三 ) 变量与指标 1 基金绩效指标 基金单位净值超额收益率 ( 我们利用基金每周公布的单位净值增长率的自然对数作为基金的收益率 , 用 基金所在地市场指数增长率的对数作为基准证券组合的收益率 , 由此计算的基金单位净值超额收益率 ( 如下 : , 1 1 it t V I N D E C R L N L V I N D E X(1) 其中,i第 其中沪市基金采用上证综合指数 , 深市基金采用深圳综合指数 ) , 第 期分别表示2007年 9月 30日和 2007年 12月 28日。 2 基金选股能力指标 基金投资组 合中前十只股票超额收益率 (如果某基金经理所投资的股票小于十只,我就取其所有投资全部股票)我们假设基金样本季度期初公布的前十只(甚至小于十只)股票 , 仍旧被各只基金经理按照原有的数量持有至样本季度期末 , 也就是假设基金经理公告的前十只重仓股在样本期没有进行买卖。(然而在实际中基金经理每月重仓股都在变发,见附表中从中国基金网中截取的 31只基金分别在 2007年 9月 28日的重仓股和 2007年 12月 28日的重仓股,对比分析,发现所持重仓股发生了明显变法,所以我取 31只基金所对应 南京财经大学本科毕业论文(设计) 12 的前十只重仓股在 2007年 9月 30日的价格为 期的价格,在 2007年12月 31日时,各股对应的市场价格为 t) 10 ,1, 1 1 * ( ) j tt i t jj j t tp s t o c k I N D E A R W L N L Np s t o c k I N D E X ( 1) , 1 , 10,11.,t i p i t( 2) 其中 , ,j , ,1为第 期期末基金 , 期期末基金 其余符号与前面相同。 3 执行成本指标 基金投资组合中前十只股票市值(如果小于十只去全部投资股票)总和占基金净值比重 (10,1 ji i (3) 4 投资风格指标 基金自己宣称的投资风格 (全景网络根据每只基金的招募公告书 , 将 33 只基金的投资 风格划分为七类。考虑到样本量的问题 , 并根据国外的划分方法 (W em 000) , 我们将我国的证券投资基金划分为成长型 (对应于全景网络中的稳健成长型和积极成长型 )、平衡型(对应于全景网络中的指数型和平衡型 ) 和其他。 5 基金规模 (S): 由于所选择的样本主要涉及封闭式基金 , 所以基金的规模在其存续期间不会改变 , 我们以各只基金上市公告书中公告的基金规模为准。 6 基金上市地点 ( : 基金上市交易的地点 深圳证券交易所或上海证券交易所 (四 ) 模型变量的选定 1 被解释变量 : 基金超额 收益率 ( 南京财经大学本科毕业论文(设计) 13 2 解释变量 (1) 基金投资组合中前十只股票超额收益率 ; (2) 基金的持股集中度 ; (3) 投资风格虚拟变量 基金投资风格为成长型或平衡型时 , 其他取 0) ; (4) 基金规模虚拟变量 S (基金规模超过 10 亿时 S 取 1, 小于 10亿时取 0) ; (5) 基金上市地点虚拟变量 沪市基金取 1, 深市基金取 0) ; (6) 上述变量的交叉乘积 1/T P)。 3 变量的选定 采用回归的方法 , 用基金超额收益率 ( 对以 上所有变量进行回归 , 结果发现 :在 95% 的显著性水平下 , 只有一个变量是显著的 : 令人惊讶的是 : 我们期待的股能力变量 ( 和投资风格变量 我们放宽条件则 pl,对 pl,回归模型:63* 四、实证结果与检验 (一 ) 回归结果 表 1模型摘要 模型一 R 调整后的 标准残差估计 1 2方差分析 模型一 平方总和 均平方 F 1 回归 a) 残差 4 总和 0 南京财经大学本科毕业论文(设计) 14 表三 系数 模型一 非标准相关 标准相关 t B 标准差 ( s 个模型的拟合优度 R=见模型的拟合优度不是特别好,这跟数据的处理以及模型的假设有关。总之通过上面模型的分析,我们很明显知道 超额收益率负 相关。 下面对 pl, 表四 模型摘要 模型二 R 调整后的 标准残差估计 1 五 方差分析 模型二 平方总和 均平方 F 1 回归 差 8 总和 0 表六 系数 模型二 非标准相关 标准相关 t B ( 合优度反而降低了,但是常数项和 通过检验,若放宽一点条件 南京财经大学本科毕业论文(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扫除用具管理办法
- 押品退还管理办法
- 2024年数控精密电火花成形机床项目项目投资筹措计划书代可行性研究报告
- 2025年卫星传输服务项目合作计划书
- 2025湖州南太湖新区管理委员会选调事业单位工作人员1人模拟试卷及参考答案详解一套
- 2024年湖南衡阳县事业单位急需紧缺人才引进29人笔试模拟试题及参考答案详解一套
- 2025年济南文旅发展集团人员招聘笔试备考试题及完整答案详解1套
- 2025安徽工程大学硕士专职辅导员招聘8人考前自测高频考点模拟试题及参考答案详解1套
- 2025广东省事业单位集中招聘高层次和急需紧缺人才10098人模拟试卷含答案详解
- 2025广东珠海市金湾区招聘公办中小学编制内教师160人模拟试卷附答案详解
- 2025数据要素流通指数:理论框架与行业实践探索白皮书
- 幼儿飞行知识课件
- 2025届江苏省镇江一中高一物理第二学期期末学业质量监测试题含解析
- 反家暴法宣传课件
- 外墙外保温工程技术培训
- 2025年部编小学一至六年级课本内古诗词
- 崇川区人才公寓管理办法
- 2025年辅警考试公安基础知识题库(附答案)
- 2025年招西宁市公安局警务辅助人员招聘考试笔试试题(含答案)
- 四川省乐山市2024-2025学年高一下学期期末教学质量检测数学试题
- 药品广告培训课件
评论
0/150
提交评论