



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.4弧长和扇形面积一、教学目标1、理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;2、经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。3、通过联系和运动发展的观点,渗透辩证唯物主义思想方法。 二、重难点1、重点:弧长公式和扇形面积公式的推导及公式的应用。2、难点:运用公式计算组合图形面积。【教师准备】教学前用百度搜索弧长和扇形面积的相关材料,结合学生实际,确定课堂教学形式和方法。四、教学方法主要采用启发式教学法,由特殊到一般,由具体到抽象,通过探究,当学生顺利得出n圆心角所对弧长公式后,再利用类比方法得出n圆心角所对扇形面积公式。同时再启发学生用联系和发展的观点得出扇形面积的第二公式。本课设置两个例题,重点巩固两个公式,培养和渗透学生几何建摸和几何推理应用意识,提高解决问题的能力和树立严谨的学习态度。五、教学过程环 节师 生 活 动设计意图课前延伸1、圆的周长;2、圆的面积;3、圆弧。教师确立延伸目标,让学生独立思考,为本课学习做好准备。课堂导入(2分钟)1.动态演示弧长和扇形变化;2.把握变化过程中几个特殊的位置,对应的弧长和扇形面积直观教学,引出课题,从而确立学习目标课内探究1、自主学习,合作探究(15分钟)弧长和扇形面积变化与哪些因素有关?:(1)圆心;(2)半径;(3)圆心角【课件演示,观察,结合特殊条件下的几个弧长的分析和计算,有什么发现?】逐步完成导学案:1、已知半径为2,这个圆的周长是 ,面积是 。当圆心角为180时,弧长是 ,弧为 ;当圆心角为360时,弧长是 ,弧为 ;当圆心角为1时,弧长是 ;弧为圆周的 分之 ;2、你能推导出半径为R,圆心角为n时,弧长是多少吗?【360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即】即3、类似的, 你能推导出半径为R,圆心角为n时,扇形面积是多少吗?【圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为】即 4、继续探索:当扇形半径为R,圆心角为n时,扇形面积S扇形与弧长l之间会有什么关系吗?【在这两个公式中,我们发现弧长和扇形面积都和圆心角n半径R有关系,因此l和S之间也有一定的关系,】即由学生查找的资料入手,调动学生课堂参与的积极性,在老师的指引下,在热烈的讨论中互相启发、质疑、争辨、补充,自己得出几个公式。不仅锻炼学生的合作学习能力、表达能力, 同时对知识有了深刻、全面、正确的理解,培养了他们抽象思维能力、科学严谨的学习态度和数学学习的方式方法。2、精讲点拨(15分钟)例1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm)分析:要求管道的展直长度,即求的长,根根弧长公式l可求得的长,其中n为圆心角,R为半径解:R40mm,n110的长R4076.8mm因此,管道的展直长度约为76.8mm例2、如图,水平放置的一个圆柱形排水管道的横截面半径为0.6m,其中水高0.3cm,求截面上有水部分的面积(结果精确到0.01cm2)分析:要求图中阴影(弓形)面积,没有直接的公式,需要转化为图形组合的和差问题,即扇形面积与三角形面积的差。容易想到做辅助线利用垂径定理,先根据公式分别求出扇形和三角形面积,问题得到解决。解:连接OA,OB,作弦AB的垂线OC,垂足为D,连接AC,则AD=BD.CDOC=0.6,CD=0.3,OD=OCCD=0.3,OD= CDADDC,AD是线段OC的垂直平分线,AC=AO=OC.AOD=60,从而AOB=120S扇形OAB=在RtAOD中OA=0.6,OD=0.3AD=0.3,AB=0.6,SOAB=S= S扇形OAB- SOAB0.22(m2)所以截面上有水部分的面积约为0.22m2。通过两道例题教学,巩固两个公式,并学习规范的书写步骤。对课本例题书写过程加以改进,使学生精准掌握例题。3、课堂提升(10分钟)1、若扇形的圆心角为120,弧长为,则扇形半径为_,扇形面积为_。 2、如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为_。3、已知扇形的周长为28cm,面积为49cm2,则它的半径为_cm。4、在AOB中,O=90,OA=OB=4cm,以O为圆心,OA为半径画,以AB为直径作半圆,求阴影部分的面积。 利用百度网络收索资料。学生分组继续巩固基础知识,广泛练习典型题目。课堂小结(3分钟)本节课你有哪些收获和体会?知识与能力方面:学生总结本节课,教师补充,完成教学目标,突出知识重点和情感体验。布置作业第115页 习题244 必做题1、2题;选做题3题。分层作业,巩固公式,掌握教材。板书设计24.4弧长和扇形面积一、扇形弧长 二、扇形面积 三、例题 例1、 例2、条理清晰,突出重点。便于学生理解和掌握。六、教学反思我认为这节课是比较成功的。1、注重了学生的学情。我们的学生大部分学习比较被动,他们所掌握的知识就局限于老师上课讲的内容,没做过、没讲过的题目基本不会做,一节课所学的内容不能多、不能快,宁可慢点,小步伐地带领学生逐一突破难关。2、突出重点、分散难点、注重数学的严密性。在讲解例题2时,引导学生“过点O作AB的垂线,交弦AB于点D,交AB弧于点C,同时让学生明白哪一条线段的长是03m,这道题是一道综合性很强的题目,教材在解答中是直接作弦AB的垂直平分线且默认经过点O,这一处理不是非常严密和科学。3、重视教师的教学观。在一开始学习弧长、扇形面积公式时,就让学生根据其中两个量直接代入公式,通过解方程求第三个量。这样经过老师耐心训练,学生慢慢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州民族大学参加第十三届贵州人才博览会引才60人考前自测高频考点模拟试题及答案详解(典优)
- 2025年甘肃省酒泉市瓜州县博物馆招聘公益性岗位工作人员模拟试卷及一套答案详解
- 2025江苏苏州工业园区星慧幼儿园后勤辅助人员招聘1人模拟试卷及答案详解(有一套)
- 2025江苏苏州市吴江区引进教育重点紧缺人才12人考前自测高频考点模拟试题及答案详解(全优)
- 2025年安徽省文物考古研究所招聘12人模拟试卷及一套完整答案详解
- 2025年甘肃省平凉市泾川县丰台镇考聘大学生村文书模拟试卷及完整答案详解1套
- 2025年淮北濉溪县现代农业投资发展有限责任公司招聘5人考前自测高频考点模拟试题及参考答案详解一套
- 2025福建福州市罗源县社会救助协管员招聘1人模拟试卷(含答案详解)
- 2025海南三亚中心医院(海南省第三人民医院)校园招聘38人模拟试卷及答案详解(必刷)
- 2025年2月广东广州市海珠区人民法院招聘劳动合同制法官助理、书记员招聘拟聘人选模拟试卷及参考答案详解一套
- 澳大利亚旅游
- 发电机的工作原理
- 道德与法治课件《我们神圣的国土》课件(34张)
- 计算与人工智能概论(湖南大学)知到智慧树章节答案
- GB/T 44625-2024动态响应同步调相机技术要求
- 2024年辽宁省大连市政公用事业服务中心招聘雇员8人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 25《王戎不取道旁李》 教学设计
- 2024年咨询工程师继续教育城市轨道交通工程可行性研究报告编制方法考试答案
- 【项目方案】源网荷储一体化项目(储能+光伏+风电)规划报告
- 咖啡因实验报告认知功能与记忆力评估
- (正式版)SHT 3075-2024 石油化工钢制压力容器材料选用规范
评论
0/150
提交评论