



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初二下数学期末知识点知识要点 1分式的有关概念 设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义 分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,要进行约分化简2、分式的基本性质 (M为不等于零的整式)3分式的运算 (分式的运算法则与分数的运算法则类似) (异分母相加,先通分); 4零指数 5负整数指数 注意正整数幂的运算性质 可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程解这个整式方程.验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去正比例、反比例、一次函数 第一象限(,),第二象限(,)第三象限(、)第四象限(,);1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b为常数,且k0),那么y叫做x的一次函数。(2)当b0时,一次函数y=kx+b即为y=kx(k0).这时,y叫做x的正比例函数。注:正比例函数是特殊的一次函数,一次函数包含正比例函数。2、正比例函数的图象与性质(1)正比例函数y=kx(k0)的图象是过(0,0)(1,k)的一条直线。(2)当k0时y随x的增大而增大直线y=kx经过一、三象限从左到右直线上升。当k0时y随x的增大而增大直线y=kx+b(k0)是上升的当k0, b0直线经过一、二、三象限(2)k0, b0直线经过一、三、四象限(3)k0直线经过一、二、四象限 (4)k0, b0时,图象的两个分支分别在一、三象限内,在每个象限内, y随x的增大而减小;当K0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。(3)由于比例函数中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。一、全等形1、全等多边形ABCABC1)、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。2)、性质:(1)全等多边形的对应边相等,对应角相等。(2)全等多边形的面积相等。 2、全等三角形1)、全等符号:“”。如图,不是为:ABCABC。读作:三角形ABC全等于三角形ABC。2)、全等三角形的判定定理(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,“边角边”);(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,“角边角”)(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,“角角边”)(4)有三边对应相等的两三角形全等。(即SSS,“边边边”)(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,“斜边直角边”)3、全等三角形的性质(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形对应边上的中线、高,对应角的平分线都相等。二、等腰三角形(一)性质定理:1、定理:等腰三角形的两底角相等。(简称“等边对等角”);2、定理的作用:证明在同一个三角形中的两个角相等。3、等腰三角形性质定理的推论(1)等腰三角形的顶角的平分线平分底边并且垂直于底边。(即“等腰三角形的三线合一”)(2)等边三角形各角都相等,并且每个角为60o。等边三角形三边对应的都有“三线合一”的情况。(二)判定定理1、定理:如果一个三角形有两个角相等,那么这两个角所对的也相等。(简写成“等角对等边”)2、判定定理的作用:证明同一个三角形中两条边相等。3、等腰三角形判定定理的推论(1)三个角都相等的三角形是等边三角形;(2)有一个角是60o的等腰三角形是等边三角形;(3)在直角三角形中,如果有一个锐角等于30o的,那么它所对的直角边等于斜边的一半。(三)等边三角形的判定1、三边都相等的三角形叫做等边三角形;2、三个角都相等的三角形是等边三角形;3、有一个角是60o的等腰三角形是等边三角形;(四)直角三角形(Rt)的判定1、有一个角是90o的三角形是直角三角形;2、一条边上的中线等于这条边的一半的三角形是直角三角形;3、若a2+b2=c2,则a、b、c为边的三角形是直角三角形。三、角平分线1、性质定理:角平分线上的点到这个角的两边的距离相等;2、判定定理:(1)把一个角分成相等的两部分射线叫做角平分线;(2)到一个角的两边距离相等的点在这个角的平分线上。3、三角形的三条角平分线的性质定理:三角形的三条角平分线交于一点。并且这一点到三条边的距离相等。四、线段的垂直平分线1、性质定理:线段的垂直平分线上的点到这条线段的两个端点的距离相等;2、判定定理:(1)经过一条线段的中点,并且垂直于这条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行面试题库精 编:专业解答银行面试常见问题
- 心源性猝死课件
- 伯林的价值多元主义课件
- 2025-2030家政企业客户投诉预警机制与服务补救体系构建报告
- 山东省公务员面试模拟题集锦
- 辽宁省大连市103中学2026届高三化学第一学期期中质量跟踪监视模拟试题含解析
- 2025年血液学模考试题与答案
- 2025年过敏性疾病治疗药物市场渠道拓展与市场覆盖分析报告
- 2025年护士核心制度考试题(附答案)
- 2025年安全责任制度试题及答案
- 《CRRT报警及处理》课件
- 矿山事故案例分析课件
- 麦当劳标准化执行
- 重症患者目标导向性镇静课件
- 混凝土养护方案
- 高质量SCI论文入门必备从选题到发表全套课件
- 长螺旋钻孔咬合桩基坑支护施工工法
- 库欣综合征英文教学课件cushingsyndrome
- 220kv升压站质量评估报告
- C语言程序设计(第三版)全套教学课件
- 未来医美的必然趋势课件
评论
0/150
提交评论