




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两条直线的交点 提出问题 坐标系内的每一条直线l都可以用方程ax by c 0表示 每一个点p都可以用坐标 a b 表示 那么 如何判断点p与直线l的位置关系 点p在l上时 坐标 a b 满足方程ax by c 0 坐标 a b 满足方程ax by c 0时 点p在l上 思考 若点p在直线2x y 1 0上 则p点坐标可设为 例1 求下列两条直线的交点l1 3x 4y 2 0 l2 2x y 2 0 l1与l2的交点是m 2 2 解 联立方程组 得 练习 p104 1 请归纳求两直线交点的方法 l1 a1x b1y c1 0 l1 a2x b2y c2 0 解之 联立方程组 若方程组有唯一解 则两直线相交 此解就是交点坐标 若无解 则两直线无公共点 此时两直线平行 若有无数解 则两直线重合 例2 判断下列各对直线的位置关系 如果相交 求出交点的坐标 1 l1 x y 0 l2 3x 3y 10 0 2 l1 3x y 4 0 l2 6x 2y 0 3 l1 3x 4y 5 0 l2 6x 8y 10 0 小结 当直线l1与l2满足什么条件时 平行 相交 重合 例3 一条直线l被两条直线x y 2 0和3x 2y 6 0截得的线段的中点恰为原点 求直线l的方程 解 由题意设l方程为y kx 练习 求经过两条直线x 2y 1 0和2x y 7 0的交点 且垂直于直线x 3y 5 0的直线方程 两条直线x my 12 0和2x 3y m 0的交点在y轴上 则m的值是 a 0b 24c 6d 以上都不对 c 3x y 10 0 例4 求直线3x 2y 1 0和2x 3y 5 0的交点m的坐标 并证明方程3x 2y 1 2x 3y 5 0 为任意常数 不论 取何值 这条直线一定过m点 练习 求证 不论实数m取何值时 直线2x y 1 m x y 2 0恒过定点p 并求出p的坐标 2 m x my 2 0 当2a b 2时 求证 直线ax by 1 0一定过定点p 并求p的坐标 例6 求点p 2 1 关于直线l x 2y 2 0对称点q的坐标 p q中点m在直线l上 写出点p a b 关于下列直线的对称点坐标l1 x轴 l2 y轴 l3 y x l4 y x a b a b b a b a 已知2a1 3b1 1 0 2a2 3b2 1 0 则过点p1 a1 b1 p2 a2 b2 的直线方程为 两点间的距离 例 已知p1 x1 y1 p x2 y2 求点p1与p2间的距离 p1p2 p1 x1 y1 p x2 y2 q x1 y2 方法一 勾股定理 p1q y1 y2 p2q x1 x2 方法二 向量法 练习 p106 1 2 例 已知a 1 2 b 3 1 在x轴上找一点p 使 pa pb 在坐标轴上找一点p 使 pa pb 在坐标轴上找一点p 使 abc为等腰三角形 方法一 待定系数法设p a 0 方法二 运用几何性质 例 1 在直线2x y 4 0上找一点p 使 op 最小 2 已知点a 3 2 b 2 5 在x轴上找一点p 使 pb pa 最大 使 pa pb 最小 b a b a p 练习 1 已知a 3 1 n 1 0 m在直线x y 0上 则 amn周长的最小值是 2 若点p x y 满足则找到点p的位置 例 证明平行四边形的四边平方和等于两对角线的平方和 建立坐标系 给出相关点的坐标 0 0 a 0 b c a b c 坐标法 点到直线的距离与两平行线间的距离 若已知点p 1 2 直线l 2x y 2 0 如何求点p到直线l的距离 引例 p q a b 1 2 p q p m q 点p x0 y0 到直线l ax by c 0的距离 练习 p1081 2 1 2x y 10 0 2 3x 2 例1求点p0 1 2 到下列直线的距离 注意 直线的方程应化为一般式 练习 p1105 例 求过点a 1 2 且与原点的距离等于1的直线方程 练习 已知正方形的中心在p 1 2 一条边在直线x 2y 2 0上 求其余三边所在的直线方程 例 求两平行直线l1 2x y 1 0 l2 2x y 4 0的距离 把直线到直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全员b证试题及答案
- 安全试题及答案大题
- 安全生产试题及答案2024
- 生物安全培训课件
- 中国发展简史课件
- 中医推拿科培训课件
- 中国南方区课件
- 中国功夫大班教学课件
- 中国创新教育课件
- 制作消防课件图片
- 移动OA系统建设方案
- DB34T∕ 2423-2015 安徽省城市道路交叉口信号控制设计规范
- 中学生高效学习策略体系(学习的逻辑)
- 2023年南京市卫健委所属部分事业单位招聘考试试题及答案
- 沪教版小学六年级语文上学期考前练习试卷-含答案
- 安徽省合肥市2023-2024学年七年级下学期期末考试数学试卷(含答案)
- 04S519小型排水构筑物(含隔油池)图集
- 小学三年级奥数竞赛试题100道及答案(完整版)
- 山东省青岛市2023-2024学年五年级下学期6月期末科学试题
- 2024年大学试题(宗教学)-伊斯兰教文化笔试考试历年典型考题及考点含含答案
- 植筋、界面处理检验批质量验收记录表
评论
0/150
提交评论