外文文献原文.pdf

并联混合动力汽车传动系统方案设计

收藏

压缩包内文档预览:(预览前10页/共15页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:7015457    类型:共享资源    大小:4.67MB    格式:RAR    上传时间:2018-01-07 上传人:优*** IP属地:广西
45
积分
关 键 词:
并联 混合 动力 汽车 传动系统 方案设计
资源描述:

 

内容简介:
HIGHLIGHTSHYDROGENFORPERFORMANCEPRINCIPLEBASEDWITHCHARGEANDTOTALTRIPLENGTHFORECASTASAFUNCTIONOFAMOVINGAVERAGEOFPASTCYCLESPEEDTHESTRATEGYWEPROPOSEAIMSATACHIEVINGAREALTIMESUBROADTRANSPORTATIONAND,PARTICULARLY,ROADVEHICLESARENOWAINNOVATIVESOLUTIONS,AIMEDATREDUCINGCOSTSANDEMISSIONS2ELECTRICVEHICLESEVSARESTILLTOOFARFROMBEINGAVALIDSOLUTIONFORTHEPROBLEM,BOTHFORREDUCEDDRIVINGRANGEANDLONGCHARGINGTIMEPROMISINGSOLUTIONSALREADYWIDELYPROPOSEDANDANALYZEDAREPLUGINHYBRIDELECTRICVEHICLESPHEVS,CHARACTERIZEDBYVEHICLESFCVS,WHICHGENERALLYMAKEUSEOFPOLYMERELECTROLYTEOFFURTHERRANGEWITHOUT5INFACT,COMPAREDTOICEPROPELLEDVEHICLES,BOTHCONVENTIONALORELECTRICONES,FCVSARE,LOCALLY,ZEROEMISSIONVEHICLESAND,INCIPLE,IFTHEFUELINGHYDROGENCOULDBEDERIVEDFROMRENEWABLEENERGYSOURCES,THESEVEHICLESCOULDALLOWFORZEROPOLLUTANTEMISSIONSALSOATAGLOBALLEVELTHEREFORE,THESEVEHICLESCANGIVEAVALIDCONTRIBUTIONTOMAKETHETRANSPORTATIONSUSTAINABLEINTHELONGTERMANDGOVERNMENTSARESTRONGLYSTRIVINGTOWARDSTHESESOLUTIONS6,7NONETHELESS,EVENBEINGARELATIVELYMATURETECHNOLOGY,THEREARESTILLSOMEDISADVANTAGESRELATEDTOTHEUSEOFFUELCELLSFORVEHICLES,SUCHASHIGHCOSTS,LOWPOWERDENSITY,ANDLACKOFCORRESPONDINGAUTHOREMAILADDRESSESLAURATRIBIOLIUNICUSANOITLTRIBIOLI,RAFFAELLOCOZZOLINOUNICUSANOITRCOZZOLINO,DANIELECHIAPPINIUNICUSANOITDCHIAPPINI,PAOLOIORAUNIBSITPIORAAPPLIEDENERGY1842016140154CONTENTSLISTSAVAILABLEAPPLIEDSEVIDAYSPROVEDTOBEONEOFTHEMAINCONTRIBUTORSTOPOLLUTANTANDGLOBALGREENHOUSEGASEMISSIONS1THIS,TOGETHERWITHTHERISINGOFFUELPRICE,ISSTRIVINGTHEAUTOMOTIVESECTORRESEARCHTOWARDSMEMBRANEFUELCELLSPEMFCS,WITHTHEPOSSIBILITYREDUCINGPOLLUTANTEMISSIONS,GIVINGASATISFACTORYTHENEEDOFANINTERNALCOMBUSTIONENGINEICEHTTP/DXDOIORG/101016/JAPENERGY20161001503062619/C2112016ELSEVIERLTDALLRIGHTSRESERVEDWHENHYBRIDPRINKEYWORDSENERGYMANAGEMENTHTPEMFCONBOARDFUELPROCESSORPONTRYAGINSMINIMUMPRINCIPLEADAPTIVECONTROLLEROPTIMALSOLUTIONOFTHECONTROLPROBLEMWHICHISCASTINTOTHEMINIMIZATIONOFTHECONSUMEDFUELTHEVEHICLEISALSOEQUIPPEDBYANAUTOTHERMALREFORMERAND,INORDERTOMINIMIZETHEHYDROGENBUFFERSIZE,THECONTROLALGORITHMISSUBJECTTOCONSTRAINTSONTHEMAXIMUMHYDROGENBUFFERLEVELACOMPARATIVEANALYSISOFTHEPROPOSEDSTRATEGYAGAINSTTHEOPTIMALONEISCONDUCTEDANDRESULTSAREREPORTEDTHEOBTAINEDFUELCONSUMPTIONSAREALSOCOMPAREDTOTHOSEOBTAINEDBYTHESAMEVEHICLE,POWEREDBYANINTERNALCOMBUSTIONENGINEANDBYAPLUGINHYBRIDELECTRICPOWERTRAINC2112016ELSEVIERLTDALLRIGHTSRESERVED1INTRODUCTIONHIGHOVERALLEFFICIENCY,SHORTTRANSIENTS,LONGRANGEANDLOWROADLOADDEPENDENCY3,4THESAMEADVANTAGESAPPLYFORFUELCELLAVAILABLEONLINE12OCTOBER2016INFORMATIONONTHESTATEOFINFORMATIONABOUTTHEDRIVINGC15MODELBASEDSIMULATORFORENERGYMANAGEMENTC15FUELPROCESSOROPTIMIZATIONFORONBOARDC15ELECTROCHEMICALMODELOFAHTPEMFCC15DESIGNOFREALTIMEPONTRYAGINSMINIMUMC15RESULTSCOMPARISONAGAINSTTHESAMEVEHICLEARTICLEINFOARTICLEHISTORYRECEIVED22APRIL2016RECEIVEDINREVISEDFORM9SEPTEMBER2016ACCEPTED2OCTOBER2016OFPARALLELFUELCELL/BATTERYVEHICLEPRODUCTIONANDSTORAGECURVESDETERMINATIONADAPTIVECONTROLLERCONVENTIONALANDHYBRIDPOWERTRAINABSTRACTTHISPAPERDESCRIBESTHEENERGYMANAGEMENTCONTROLLERDESIGNOFAMIDSIZEDVEHICLEDRIVENBYAFUELCELL/BATTERYPLUGINHYBRIDPOWERTRAIN,WHEREANEXPERIMENTALLYVALIDATEDHIGHTTEMPERATUREPOLYMERELECTROLYTEMEMBRANEFUELCELLMODELISUSEDTHEPOWERMANAGEMENTSTRATEGYISDERIVEDBYTHEAPPLICATIONOFTHEPONTRYAGINSMINIMUMPRINCIPLE,WHERETHECONTROLPARAMETERISADAPTEDBYUSINGFEEDBACKADEPTOFINDUSTRIALENGINEERING,UNIVERSITDIROMANICCOLCUSANO,ITALYBDEPTOFMECHANICALANDINDUSTRIALENGINEERING,UNIVERSITDIBRESCIA,ITALYENERGYMANAGEMENTOFAPLUGINFUELCELL/BATTERYONBOARDFUELPROCESSINGLAURATRIBIOLIA,RAFFAELLOCOZZOLINOA,DANIELECHIAPPINIJOURNALHOMEPAGEWWWELHYBRIDVEHICLEWITHA,PAOLOIORABATSCIENCEDIRECTENERGYERCOM/LOCATE/APENERGYPROVIDING100OFVEHICLETRACTIONPOWERNEVERTHELESS,THECOOPERATIONWITHANENERGYSTORAGESYSTEM,SUCHASABATTERY,CANENERGYHYDROGENINFRASTRUCTURES6THELATTERISSUECOULDBESOLVEDBYUSINGANONBOARDFUELPROCESSORFORONSITEHYDROGENPRODUCTIONFROMHYDROCARBONFUELSTHISSOLUTIONHASBEENOFTENINVESTIGATEDFORTHEUSEOFHYDROGENENRICHEDFUELDIRECTLYININTERNALCOMBUSTIONENGINES8,9EARLYPROTOTYPESFORFUELPROCESSORSTOBEUSEDDIRECTLYINVEHICLESWEREOBTAINEDBYSCALINGDOWNALREADYEXISTINGINDUSTRIALTECHNOLOGIESINTHISCASE,GASOLINE,ETHANOLANDOTHERAUTOMOTIVEFUELSCOULDBESUCCESSFULLYPROCESSED,BUTTHEPROTOTYPESSTILLREQUIREDVOLUMEANDMASSNOTSUITABLEFORAUTOMOTIVEAPPLICATIONSINTHEUS,ON2004,THESEISSUESANDTHECOMPETITIONWITHMOREMATURETECHNOLOGIES,SUCHASGASOLINE/BATTERYHYBRIDVEHICLES,HAVECONVINCEDTHEDOEONBOARDFUELPROCESSINGGO/NOGODECISIONTEAMTOTERMINATETHERESEARCHONONBOARDFUELPROCESSINGFORFCVS10INEUROPE,INTHEEARLY2000S,DAIMLERCHRYSLERSTARTEDTESTINGMETHANOLPROCESSORSFORTHEFUELINGOFFUELCELLVEHICLEPROTOTYPESNECAR5,BASEDONTHEACLASSMERCEDESDESIGN,WASTHELASTLAUNCHEDPROTOTYPE,WHICHUSEDA75KWBALLARDFUELCELLSHOWINGIMPRESSIVEPERFORMANCE11IN2004,RENAULT/NUVERAPRESENTEDAFOURYEARPROJECTFORAFUELPROCESSORFORONBOARDHYDROGENPRODUCTIONSMALLENOUGHANDPOWERFULENOUGHFORUSEONAVEHICLE,BUTALSOTHISPROGRAMENDEDIN2008WITHNOFURTHERDEVELOPMENTS12INTHESEEARLYPROJECTS,ONBOARDFUELPROCESSINGHADBEENCONSIDEREDFORFUELCELLSPROVIDING100OFVEHICLETRACTIONPOWER,WITHREFORMERSIZEANDSYSTEMCOSTSWHICHMADETHISSOLUTIONUNWORTHYAFTERWARDS,ONBOARDFUELPROCESSINGWASINVESTIGATEDAGAINFORCOUPLINGWITHFUELCELLSUSEDASAUXILIARYPOWERUNITSAPUSINFACT,WHENAFUELCELLISUSEDASAPU,ITSPOWERISREDUCED,THESYSTEMCANBEMORECOMPACTANDHYDROGENSTORAGEUNITISNOTREQUIREDTECHNOLOGICALFEATURESANDCHALLENGESOFONBOARDREFORMINGOFHEAVYHYDROCARBONFUELSTOFEEDSOLIDOXIDEFUELCELLSSOFCSASAPUSHAVEBEENSUMMARIZEDBY13,UNDERLININGTHEBENEFITSOFAUTOTHERMALREFORMINGATROVERPARTIALOXIDATIONPOXANDSTEAMREFORMINGSRATRHASBEENAGAINCOUPLEDTOSOFCSBY14,WHOEVALUATEDTHEEFFECTOFOFFGASRECYCLEONOVERALLSYSTEMEFFICIENCYALBEITTHELOWEREFFICIENCYANDPOORERFUELQUALITY15,ATRISRECOGNIZEDTOBETHEBESTSOLUTIONFORTRANSPORTATIONAPPLICATIONSINFACT,REACTIONSARECONSIDEREDTOBETHERMALLYSELFSUSTAINING,ANDTHEREFORE,THEYDONOTPRODUCEORCONSUMEEXTERNALTHERMALENERGY,UNLIKEPOXORSRINTHEAUTOMOTIVESECTOR,THOUGH,POLYMERELECTROLYTEMEMBRANEFUELCELLSAREPREFERREDTOSOFCSBEINGMORERELIABLEANDHAVINGFASTERTRANSIENTSONBOARDFUELPROCESSINGFORANAPUBASEDONALOWTEMPERATUREPOLYMERELECTROLYTEMEMBRANEFUELCELLLTPEMFCHASBEENINVESTIGATEDBY16HOWEVER,THESEDEVICESAREAFFECTEDBYCOPOISONING15,1719ANDREQUIREHIGHPURITYHYDROGEN,WHICHCANASKFORMORETHANONEWATERGASSHIFTUNITSANDFORAPREFERENTIALOXIDATIONREACTORORSEPARATIONMEMBRANESSUCHACOMPLEXANDSPACECONSUMINGSYSTEMISRATHERUNSUITABLEFORAPPLICATIONSLIKESMALLORMEDIUMSIZECARSINSTEAD,HIGHTEMPERATUREPEMFUELCELLSHTPEMFCSAREMORETOLERANTTOCARBONMONOXIDEANDMAYCOPEWITHANINCREASEDCOLEVELINTHESYNGAS20,AVOIDINGTHENEEDOFWATERGASSHIFTUNITSANDPREFERENTIALOXIDATIONREACTORHTPEMFCSCANALSOBEOPERATEDWITHOUTEXTERNALGASHUMIDIFICATIONFURTHERSIMPLIFYINGSYSTEMCOMPLEXITYANDMANAGEMENTANDHAVETHEADVANTAGEOFAMOREEFFICIENTHEATDISSIPATIONANDOFABETTERINTEGRATIONINTHESYSTEMTHERMALMANAGEMENT21MOREOVER,THEINCREASEDELECTRODEKINETICSRESULTINGFROMTHEHIGHEROPERATINGTEMPERATURESALLOWUSINGALTERNATIVECATALYSTSFORTHEELECTRODES,THUSREDUCINGCOSTS22THERESULTISASIGNIFICANTREDUCTIONINSYSTEMCOMPLEXITY,SIZEANDCOSTANEXTENSIVEREVIEWOFHTPEMFCBASEDAUXILIARYPOWERUNITSHASBEENPROPOSEDBY22FORDIESELPOWEREDROADVEHICLES,SHOWINGTHEIRGREATPOTENTIALLTRIBIOLIETAL/APPLIEDBESIDETHESEAPPLICATIONS,RECENTDEVELOPMENTSINAUTOTHERMALREACTORSAREJUSTIFYINGTHECOMEBACKTOTHEUSEOFONBOARDPROCESSORSINVEHICLESWHERETHEFUELCELLISUSEDFORTRACTIONPURPOSESREDUCETHEFUELCELLSIZEAND,CONSEQUENTLY,THEREFORMERSIZEFUELCELLSIZECANBEFURTHERREDUCEDBYEMPLOYINGAPLUGINSOLUTION,WHICHGIVESTHEPOSSIBILITYOFCHARGINGTHEBATTERYBYMEANSOFANEXTERNALSOURCE,EXTENDINGITSOPERATINGRANGEHOWEVER,THEREALBENEFITSOFSUCHASOLUTIONCANONLYBEEMPHASIZEDWITHAPROPERENERGYMANAGEMENTOFALLTHEINVEHICLEPOWERSOURCES25SEVERALENERGYMANAGEMENTCONTROLSTRATEGIESHAVEBEENALREADYPROPOSEDFORFUELCELLVEHICLE,SUCHASHEURISTICSTRATEGIES2628,EQUIVALENTCONSUMPTIONMINIMIZATIONSTRATEGYECMS29,30ANDSTRATEGIESBASEDONOPTIMALCONTROLTHEORY3135NONETHELESS,THESEANALYSESAREALLAPPLIEDTOFUELCELLVEHICLESWITHHYDROGENPRODUCEDOFFLINEANDSTOREDONBOARD,WHILETHEENERGYMANAGEMENTOFVEHICLESWITHONBOARDFUELPROCESSINGISUSUALLYBASEDONOPERATIONOFTHEFUELCELLATCONSTANTPOWER,DERIVEDFROMTHESTANDALONEOPTIMIZATIONOFTHEATR/FCSYSTEMEFFICIENCYASYSTEMEFFICIENCYOF251HASBEENEVALUATEDFORAMETHANOLBASEDONBOARDREFORMERFORPEMFUELCELLBY23,WHILE36OBTAINEDASYSTEMEFFICIENCYUPTO41,FORAFUELCELLSYSTEMWITHAUTOTHERMALETHANOLREFORMEREVENCLAIMINGTHEPOSSIBILITYOFUSINGTHESYSTEMONVEHICLE,THOSERESULTSWEREOBTAINEDWITHASTANDALONESYSTEMALSOIN24,ASTANDALONEHYDROGENPRODUCTIONUNITFROMREFORMINGOFETHANOLFORLTPEMFCISSIMULATEDFORONBOARDPURPOSESTHEREISNOEVIDENCEOFSTUDIESONTHEENERGYMANAGEMENTOFFUELCELLVEHICLESWITHANONBOARDPROCESSORANDVARIABLEFUELCELLLOADCONSTRAINTSDERIVEDFROMTHEHYDROGENAVAILABILITYMUSTBECONSIDEREDINTHEENERGYMANAGEMENTINTHISCASEINTHISPAPER,THEDESIGNOFACONTROLLERFORTHEENERGYMANAGEMENTOFAPARALLELFUELCELL/BATTERYVEHICLEWITHANONBOARDFUELPROCESSORISPROPOSEDTHEAPPLICATIONISAVEHICLEEQUIPPEDBYANAUTOTHERMALREFORMERPRODUCINGASYNGASFROMISOOCTANE,CONSIDEREDASGASOLINESURROGATEASPENPLUSTMHASBEENUSEDFORTHEFUELPROCESSORMODELING,INORDERTOFINDTHEOPERATINGPOINTWHICHMAXIMIZESTHECONVERSIONEFFICIENCYANDPROPERLYEVALUATESTHESYNGASCOMPOSITIONTHEFUELCELLISAHTPEMFC,WHOSEPERFORMANCEASAFUNCTIONOFTHESYNGASCOMPOSITIONHAVEBEENCAREFULLYEVALUATEDBYMEANSOFASELFMADESEMIEMPIRICALCODE,REALIZEDBYTHEAUTHORSANDPRESENTEDIN37,38ASTHEFUELCELLLOADCANVARY,THEFUELPROCESSORCANNOTSATISFYTHEHYDROGENDEMANDINREALTIMEAND,THEREFORE,ASYNGASBUFFERISPLACEDBETWEENTHEFUELPROCESSORANDTHEFUELCELLTHESTRATEGYDERIVESFROMTHEAPPLICATIONOFTHEFRAMEWORKPROPOSEDIN39TOFUELCELLVEHICLESANDCONSIDERSTHEDYNAMICOFTHESYNGASBUFFERANDTHECONSTRAINTSDERIVEDFROMTHEHYDROGENAVAILABILITYMOREOVER,THEADAPTATIONLAWPROPOSEDINTHEPREVIOUSALGORITHMHASALSOBEENIMPROVEDBYUSINGTHEINFORMATIONONTHEDRIVINGCYCLEAVERAGESPEED,AVERAGEDONPASTDRIVINGCONDITIONS,FORPATTERNTYPOLOGYRECOGNITIONINORDERTODEMONSTRATETHEEFFECTIVENESSOFTHEPROPOSEDALGORITHM,ACOMPARATIVEANALYSISOFTHEALGORITHMAGAINSTTHEOPTIMALONEISCONDUCTEDANDMAINRESULTSAREREPORTEDTHEMODELHASBEENVALIDATEDBYCOMPARINGTHERESULTSTOTHEFUELCONSUMPTIONOFTHEORIGINALCONVENTIONALVEHICLE,NAMELYTHECHEVROLETMALIBU,ANDTOAPLUGINHYBRIDELECTRICPOWERTRAINIMPLEMENTEDONTHESAMEVEHICLECHASSISINAPASTWORK402VEHICLEMODEL23,24INPARTICULAR,ASMENTIONEDABOVE,EARLYPROJECTSFAILEDBECAUSETHEYFOCUSEDONTHEONBOARDFUELPROCESSINGFORFUELCELLS1842016140154141THESIMULATORUSEDFORTHESTUDYISAQUASISTATICFORWARDLOOKINGSIMULATOR,DEVELOPEDINMATLABSIMULINKANDDERIVEDFROMAPASTSTUDY40THEDRIVERMODELISBASEDONAPIDCONTROLLER,THATCOMPARESTHEACTUALVELOCITYOFTHEVEHICLEWHICHISACONSEQUENCEOFTHEEQUILIBRIUMBETWEENTHETORQUEDELIVEREDBYTHEPOWERTRAINTOTHEWHEELSANDTHERESISTANCESTOTHEVEHICLEAERODYNAMICRESISTANCEANDROADSLOPETHEMAINPARAMETERSUSEDEQUIVALENTVEHICLEMASSISINVOLVEDTOTAKEINTOACCOUNTTHEROTAPOWERDIRECTLYTOTHEELECTRICMOTORORTOTHEBATTERYAND,IFREQUIRED,THEBATTERYANDTHEFCCANPROVIDEPOWERTOTHEFRONTTEMPERATUREWATERSHIFTREACTORWGSRINWHICHCOREACTSWITHH2OH2ANDCO2ARETHEPRODUCTSCONSIDEREDC15HEATRECOVERYLINESINCETHETHERMALEFFICIENCYOFTHEFUELPROCESSORUNITDEPENDSSTRONGLYONREACTANTSPREHEATINGTEMPERATURES,ASREPORTEDIN42,AHEATRECOVERYLINEISDEFINEDBYCOOLINGTHESYNGASSTREAMTEMPERATUREINTWOHEATEXCHANGERSINPARTICULAR,THEWATERANDISOOCTANEREQUIREDBYTHESTEAMREFORMINGREACTIONAREPREHEATEDINHEX2BYCOOLINGTHESYNGASSTREAM,ANDTHENHEATEDINTHEHEX1THEOXYGENSENTTOTHEAUTOTHERMALREACTORISALREADYHEATEDUPTO351C176CASTHEMEMBRANESEPARATIONPROCESSREQUIRESCOMPRESSEDAIRAT10BAR,ANDTHECOMPRESSIONHEATSTHEOXYGENC15SEPARATIONUNITSEP1MEMBRANESEPARATIONUNITWHERETHEPUREOXYGENISPRODUCEDHERETHEAIRISCOMPRESSEDUPBYC1TO10BARANDTHENTHROUGHTHEMEMBRANETHEOXYGENISSEPARATEDFROMNITROGENWITHA95REMOVALEFFICIENCY43C15INTERREFRIGERATEDCOMPRESSIONLINEIRCLLASTSTAGEOFTHESYNGASPRODUCTIONLINETHISISEQUIPPEDWITHTHREECOMPRESSORSANDTWOHEATEXCHANGERSANDITISNEEDEDINORDERTOINCREASETHESYNGASPRESSUREUPTOTHEHYDROGENBUFFERPRESSURE,IE250BAR,REPRESENTEDASICCOMPRESSIONSECTIONINFIG3142LTRIBIOLIETAL/APPLIEDENERGY1842016140154MOTOR,TOGETHERTHEFRONTMOTORISAGVM210150PERMANENTMAGNETELECTRICMACHINEANDHASBEENMODELEDBYMEANSOFITSEFFICIENCYMAP,DEPICTEDINFIG2,ANDOTHERPERFORMANCEDATAAVAILABLEFROMTHEMANUFACTURER41THEPOWERTRAINSPECIFICATIONSARELISTEDINTABLE2UNLIKE40,WHERETHEFUELCELLWASALTPEMFC,NOWTHESTACKISCOMPOSEDBY325CELLSINSERIES,EACHOFANEFFECTIVEAREAOF120CM2ASTORAGEBUFFERISPLACEDBETWEENTHEATRANDFCSTACK,WHERETHEHYDROGENPRODUCEDBYTHEATRISSTOREDTOBEUSEDBYTHEFUELCELLWHENITISREQUIREDTHISWAY,THEATRCANWORKATAFIXEDOPTIMIZEDOPERATINGPOINTTHEATRHASBEENPROPERLYMODELEDINORDERTOEVALUATETHEISOOCTANEDERIVEDSYNGASCOMPOSITIONANDTHEMODELISDESCRIBEDINSECTION21AFTERWARDS,AZERODIMENSIONALELECTROCHEMICALMODELOFAHTPEMFC,PROPOSEDIN37,38ANDBRIEFLYDESCRIBEDINSECTION22,MAKESUSEOFTHEOBTAINEDSYNGASCOMPOSITIONFORTHEDETERMINATIONOFTHEFCSTACKEFFICIENCYANDTHEVOLTAGECURRENTDENSITYCURVEFORASINGLECELL21ATRMODELTHEAIMOFTHISSECTIONISTODEFINETHEOPERATINGCONDITIONSTHATMAXIMIZETHEEFFICIENCYOFATRBASEDFUELPROCESSORFEDBYISOOCTANEASPENPLUSTMHASBEENUSEDFORTHEFUELPROCESSORMODELING,INORDERTOFINDTHEOPERATINGPOINTWHICHMAXIMIZESTHECONVERSIONEFFICIENCYTHEGENERALREFORMINGREACTIONMECHANISMCANBEWRITTENASC8H18AH2OCO2377CN2PRODUCTS1WHEREAANDCARETHESTOICHIOMETRICCOEFFICIENTSOFWATERANDAIRRESPECTIVELYTHEONLYPRODUCTSCONSIDEREDINTHEGLOBALREACTION1AREH2COCO2CH4CSANDH2OINORDERTOOBTAINMAXIMUMHYDROGENPRODUCTION,THEREFORMINGREACTIONHASTOBECARRIEDOUTINTWOSTEPSTABLE1MAINPARAMETERSFORVEHICLEDYNAMICSCALCULATIONSTIONALINERTIAOFALLTHECOMPONENTSOFTHEDRIVELINEANDISAPPROXIMATIVELYESTIMATEDINANINCREASEOF10OFTHEOVERALLVEHICLEMASS,EVALUATEDFROMTHEMAINCOMPONENTSMASSESANDTHECARSHELLANDFRAMETHEFCVPOWERTRAIN,SKETCHEDINFIG1,CONSISTSOFAHTPEMFC,ADC/DCCONVERTERANDALIION105S2PBATTERYPACK,LINKEDTOGETHERTOANELECTRICMOTORBYMEANSOFADC/ACINVERTERTHANKSTOTHESPECIFICEFFICIENCYMAP,THEMOTORCANBEDIRECTLYLINKEDTOTHEFRONTWHEELSWITHOUTANYTRANSMISSIONRATIOTHEFCSUPPLIESFORTHEVEHICLEDYNAMICSCALCULATIONSAREGIVENINTABLE1ANMOTIONWITHTHEDESIREDVELOCITYTHECONTROLLEROUTPUTSTHEACCELERATORORTHEBRAKEPEDALPOSITION,WITHTHESIMULATORCHOOSINGTHEFIRSTORTHESECONDIFTHETORQUEATTHEWHEELSISPOSITIVEORNEGATIVETHEACTUALVEHICLESPEEDISCOMPUTEDBYSOLVINGTHELONGITUDINALVEHICLEDYNAMICS,WHICHTAKESINTOACCOUNTALLTHERESISTANCESTOTHEVEHICLEMOTION,SUCHASROLLINGRESISTANCEATTIRES,CURBWEIGHTFRONTALAREADRAGCOEFFICIENT1500KG2M2035C15HIGHTEMPERATURESTEPREFORMINGREACTION,INWHICHISOOCTANEISCONVERTEDINTOAGASEOUSMIXTUREOFH2COCO2CH4CSANDUNREACTEDH2OC15LOWTEMPERATURESTEPWATERGASSHIFTREACTION,INWHICHCOISREACTEDWITHH2OTOWARDSH2ANDCO2THEMAINCOMPONENTSOFTHEPROCESS,REPRESENTEDINFIG3,AREC15AUTOTHERMALREACTORATRREFORMINGREACTORINWHICHTHEISOOCTANEISCONVERTEDINTOAGASEOUSMIXTUREOFH2COCO2,ANDH2OTHEATRISFEDBYISOOCTANE,STEAMANDOXYGENANDITISMAINTAINEDUNDERADIABATICCONDITIONSC15WATERGASSHIFTREACTORWGSRWATERGASSHIFTREACTORLOWFIG1VEHICLEPOWERTRAINSCHEMATICROLLINGRESISTANCECOEFFICIENTWHEELRADIUS001302MENERGY5010015020025001502025030450606507075080808508509095LTRIBIOLIETAL/APPLIEDDUETOTHECOMPLEXITYOFTHEREACTIONSYSTEM,THETHERMODYNAMICEQUILIBRIUMANALYSISISDETERMINEDBYTHENONSTOICHIOMETRICAPPROACH15INTHISAPPROACHTHEEQUILIBRIUMCOMPOSITIONOFTHESYSTEMISFOUNDBYTHEDIRECTMINIMIZATIONOFTHEGIBBSFREEENERGYFORAGIVENSETOFSPECIESWITHOUTANYSPECIFICATIONOFTHEPOSSIBLEREACTIONSTHATMIGHTTAKEPLACEINTHESYSTEMTHUS,ITISASSUMEDTHATTHECARBONINTHEFUELISREFORMEDONLYTOCH4COORCO2ANDCSTHEEQUILIBRIUMCOMPOSITIONSHAVEBEENCALCULATEDFORAGIVENOPERATINGCONDITIONAND,INORDERTODETERMINETHECHEMICALEFFICIENCY,THEMASSANDENERGYBALANCES010002000300040002502001501005000150202503045055060650707509095ELECTRICMOTORSPEEDRPMELECTRICMOTORTORQUENMFIG2ELECTRICMOTOREFFICIENCYTABLE2POWERTRAINCOMPONENTSSPECIFICATIONSELECTRICMOTORBATTERYPACKRATEDPOWER75KWENERGYCAPACITY13KWPEAKTORQUE270NM30004200RPMNOMVOLTAGE340RATEDTORQUE130NM05000MAXCURRENT180MINCURRENTC060FIG3ATRSYSTEM0150504505509EFFICIENCYMAX/MINTORQUE1842016140154143ARESOLVEDFOREACHCONFIGURATIONTHECHEMICALEFFICIENCYOFTHEATRSYSTEMCANBEWRITTENASGCHEMATRNH2C1LHVH2NC8H18C1LHVC8H182WHERENH2MOL/SISTHENUMBEROFMOLESOFHYDROGENPRODUCED,NC8H18MOL/STHENUMBEROFMOLESOFISOOCTANECONSUMED,LHVH2J/MOLANDLHVC8H18J/MOLTHELOWERHEATINGVALUESOFHYDROGENANDISOOCTANE,RESPECTIVELY500060007000800020203035040506065070750808509MAP41FUELCELLH2BUFFERHRATEDPOWER21KWVOLUME80LVCELLSNO325H2STOREDMASS1KGAACTIVEAREA120CM2H2PRESSURE250BARALAYOUTINORDERTOIDENTIFYTHETHERMODYNAMICALLYFAVORABLEOPERATINGCONDITIONSOFTHEATRSYSTEMFORTHEMAXIMUMCONVERSIONEFFICIENCY,ASENSITIVITYANALYSISHASBEENCARRIEDOUTBYVARYINGC15THESTEAMTOCARBONRATIOS/CATTHEAUTOTHERMALREACTOR,DEFINEDASTHERATIOBETWEENTHEMOLEFLOWRATEOFTHESTEAMFEEDINGTHEREACTORANDTHECARBONMOLEFLOWRATEOFTHEFEEDINGISOOCTANE,INTHERANGE0236C15THEOXYGENTOCARBONRATIOO/CATTHEAUTOTHERMALREACTOR,DEFINEDASTHERATIOBETWEENTHEMOLEFLOWRATEOFTHEOXYGENFEEDINGTHEREACTORANDTHECARBONMOLEFLOWRATEOFTHEFEEDINGISOOCTANE,INTHERANGE1317C15THEPREHEATTEMPERATUREOFISOOCTANEANDWATERFEEDINGTHEAUTOTHERMALREACTOR,RECOVERINGTHEHEATINTERNALLYINTHEPROCESSFOREACHSIMULATIONAC8H18MASSFLOWEQUALTO894C110C04KGSHASBEENIMPOSEDASACONSTRAINT,INORDERTOHAVEANATRSYSTEMINPUTPOWEREQUALTO40KW,WHILETHEOTHEROPERATINGPARAMETERSAREPRESENTEDINFIG3REFERRINGTOTHECARBONDEPOSITIONINTHEATRREACTOR,WHICHISHIGHLYUNDESIRABLEBECAUSEITDEACTIVATESTHECATALYSTANDREDUCESPROCESSEFFICIENCY,THEANALYSISCARRIEDOUTTOPREDICTTHETHERMO144LTRIBIOLIETAL/APPLIEDENERGYDYNAMICALLYCARBONFREEREGIONOFREFORMINGOPERATIONS15HASINDICATEDTHATTHEPRESENCEOFSOLIDCARBONSTRONGLYDEPENDSONTHES/CVALUEANDONREFORMINGTEMPERATUREASARESULTOFTHISANALYSISTHES/CMOLARRATIOCONSIDEREDHERE,FOREVERYREFORMINGTEMPERATURE,ARETHOSEATWHICHCARBONDEPOSITIONISAVOIDEDS/CANDO/CMOLARRATIOSAREIMPORTANTPARAMETERSFORTHEPROCESSTHESEPARAMETERSSHOULDBECHOSENWITHTHEAIMOFAVOIDINGTHEFORMATIONOFCARBONACEOUSDEPOSITSANDMAXIMUMHYDROGENPRODUCTIONEFFICIENCYFIG4SHOWSTHEATREFFICIENCYCALCULATEDWITHRESPECTTODIFFERENTS/CANDO/CRATIOSITCANBEHIGHLIGHTEDTHATTHEMAXIMUMEFFICIENCYVALUEABOUT800ISOBTAINEDFORAS/CANDO/CRATIOEQUALTO12AND16RESPECTIVELYATTHISCONDITIONTHEPREHEATTEMPERATUREFORISOOCTANEANDWATERFEEDINGTHEREACTORISEQUALTO261C176C,WHILETHEOPERATINGREACTORTEMPERATUREISEQUALTO713C176CTHESYNGASCOMPOSITIONLEAVINGTHEREACTORATTHISCONDITIONAFTERTHEFIG4ATRCHEMICALE
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:并联混合动力汽车传动系统方案设计
链接地址:https://www.renrendoc.com/p-7015457.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!