




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
咸阳市20192020学年度第一学期期末教学质量检测高二数学(理科)试题一、选择题1.一元二次不等式的解集为( )A. 或B. 或C. D. 【答案】C【解析】【分析】根据二次函数得图像,可得结果.【详解】令,如图由,所以图形在轴下方,所以故选:C【点睛】本题考查一元二次不等式的的解法,属基础题.2.已知等比数列中,公比,则( )A. 1B. C. 3D. 【答案】B【解析】【分析】根据等比数列的通项公式可得结果【详解】由数列是等比数列,所以则,又,所以故选:B【点睛】本题考查等比数列的通项公式,属基础题.3.在中,角,所对的边分别为,若,则( )A. B. 2C. 3D. 【答案】A【解析】【分析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题4.准线方程为的抛物线的标准方程是( )A. B. C. D. 【答案】D【解析】【分析】根据题意,由抛物线的准线方程可得其焦点在轴负半轴上,且,由抛物线的标准方程可得答案【详解】解:根据题意,抛物线的准线方程为,即其焦点在轴负半轴上,且,得,故其标准方程为:故选D【点睛】本题考查抛物线的几何性质,关键是掌握抛物线的标准方程的四种形式5.命题“”的否定是( )A. B. C. D. 【答案】C【解析】【分析】按规则写出存在性命题的否定即可.【详解】命题“”的否定为“”,故选C.【点睛】全称命题的一般形式是:,其否定为.存在性命题的一般形式是,其否定为.6.已知,则下列不等式一定成立的是( )A. B. C. D. 【答案】D【解析】【分析】根据不等式的性质,可得结果.【详解】因为,所以,又,所以故选:D【点睛】本题考查不等式的性质,熟练记住一些结论,如:不等式两边同乘或同除以一个正数,不改变不等号的方向,属基础题.7.若直线的方向向量为,平面的法向量为,则( )A. B. C. D. 与斜交【答案】B【解析】【分析】通过,可以得出,所以可以判断直线之间的关系.【详解】,即.【点睛】本题考查了利用空间向量的关系,判断线面垂直.8.如图,在空间四边形OABC中,点M在线段OA上,且,点N为BC的中点,则( )A. B. C. D. 【答案】D【解析】【分析】根据空间向量的线性运算求解即可.【详解】由题,故选:D【点睛】本题主要考查了空间向量的基本运算,属于基础题型.9.数列满足,则的前10项和为( )A. B. C. D. 【答案】B【解析】【分析】根据裂项相消法求和.【详解】因为,所以的前10项和为,选B.【点睛】本题考查裂项相消法求和,考查基本分析求解能力,属基础题.10.已知是等比数列,则“”是“是递增数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据递增数列的定义并结合对项取值,可得结果【详解】由数列是等比数列,可假设,则,可知,但数列不是递增数列,若数列是递增数列,由定义可知,故“”是“是递增数列”的必要不充分条件故选:B【点睛】本题考查充分、必要条件的定义,同时还考查了等比数列的单调性,巧取特殊值,快速解决问题,属基础题.11.有下列四个命题:若为假命题,则p,q均为假命题;命题“若,则”的否命题为“若,则”;命题“若,则”的逆否命题为“若,则”;设,命题“若,则”的逆命题是真命题;其中真命题的个数是( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据四个命题和逻辑连接词的性质逐个分析即可.【详解】对, 若为假命题,则p,q均为假命题.故正确.对, 题“若,则”的否命题为“若,则”;故错误.对, 命题“若,则”的逆否命题为“若,则”;故正确.对, 设,命题“若,则”的逆命题是“若,则”,为假命题;故错误.综上,正确.故选:B【点睛】本题主要考查了命题真假判断与四个命题间的基本关系,属于基础题型.12.已知点为双曲线的右焦点,以为圆心的圆过坐标原点,且圆与双曲线的两条渐近线分别交于两点,若四边形是菱形,则双曲线的离心率为( )A 2B. C. D. 3【答案】A【解析】【分析】根据菱形的定义以及圆的半径,可得渐近线的斜率,结合的关系和离心率的表示,可得结果.【详解】如图,圆的半径为,且四边形是菱形,所以,可知,所以,即所以,又,则,由,且所以故选:A【点睛】本题考查双曲线的离心率,高考常考题,正确分析题干,理清思路,属基础题.二、填空题13.不等式的解集是_.【答案】【解析】【分析】根据分式不等式的方法求解即可.【详解】.故答案为:【点睛】本题主要考查了分式不等式的求解,属于基础题型.14.已知的顶点A是椭圆的一个焦点,顶点B、C在椭圆上,且BC边经过椭圆的另一个焦点,则的周长为_.【答案】【解析】分析】根据椭圆的定义求解即可.【详解】易得的周长为B、C两点到两个焦点间的距离之和为.故答案为:【点睛】本题主要考查了椭圆的定义运用,属于基础题型.15.已知,则的最小值为_.【答案】16【解析】【分析】因为,故再展开用基本不等式求最小值即可.【详解】.当且仅当时等号成立.故答案为:【点睛】本题主要考查了基本不等式求最小值的问题,属于基础题型.16.设等差数列的前n项和为,若,则当取最大值时,n的值为_.【答案】10【解析】【分析】根据等差数列求和的公式分析即可.【详解】由题有且公差.故等差数列为首项大于0,且逐项递减的等差数列.因为所以.又.故.当取最大值时,n的值为10故答案为:10【点睛】本题主要考查了递减等差数列的运用,需要根据等差数列前n项和的性质确定由正变负交替的两项进行分析.属于中等题型.三、解答题17.设等差数列的公差为,为的等比中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)根据等比中项的概念求出公差,结合等差数列的通项公式,可得结果.(2)根据(1)的结论,结合分组求和的方法,可得结果.【详解】解:(1),为与的等比中项,即,由,所以,数列的通项公式为.(2)由(1)得,.【点睛】本题考查等差数列的通项公式以及分组求和,掌握求和的基本题型,比如:分组求和,裂项相消,错位相减等,属基础题.18.如图,在棱长为2的正方体中E,F分别为AB,的中点.(1)求;(2)求证:平面【答案】(1);(2)证明见解析【解析】【分析】(1)根据空间坐标中的距离公式求解即可.(2)根据空间向量即可证明进而有平面.【详解】解:(1)由题知,(2)由题知,故,又平面,平面EF平面.【点睛】本题主要考查了空间向量求点到点距离和线面平行的证明.属于中等题型.19.在ABC中,a、b、c分别是内角A、B、C的对边,且(1)求角C的大小;(2)若,求的面积.【答案】(1);(2)【解析】【分析】(1)根据正弦定理将角转换为边,再利用余弦定理求解即可.(2)根据余弦定理可求得,再根据面积公式求解即可.【详解】解:(1),由正弦定理可得,由余弦定理有,(2)由(1)可得,即,又,的面积【点睛】本题主要考查了利用正余弦定理与面积公式解三角形的问题,属于中等题型.20.已知F为抛物线的焦点,点为抛物线C内一定点,点P为抛物线C上一动点,且的最小值为8.(1)求抛物线C的方程;(2)若直线与抛物线C交于、两点,求BD长.【答案】(1);(2)【解析】【分析】(1)根据抛物线的定义可知分析取得最小值时的情况列出关于的方程求解即可.(2)联立直线与抛物线C,求出对应的二次方程的韦达定理,进而利用弦长公式求解即可.【详解】解:(1)设d为点P到的距离,则由抛物线定义知,当点P为过点A且垂直于准线的直线与抛物线的交点时,取得最小值,即,解得,抛物线C的方程为.(2)联立,得,显然,【点睛】本题主要考查了抛物线的几何意义与根据直线与抛物线相交的问题求解弦长的公式,属于中等题型.21.如图,在四棱锥S-ABCD中,底面ABCD,四边形ABCD是边长为1的正方形,且,点M是SD的中点.请用空间向量的知识解答下列问题:(1)求证:;(2)求平面SAB与平面SCD夹角的大小.【答案】(1)证明见解析;(2)45【解析】【分析】(1) 以A为原点,AB为x轴,AD为y轴,AS为z轴,建立空间直角坐标系,再证明即可.(2)分别求出平面SAB与平面SCD的法向量,再利用空间向量的公式求解二面角即可.【详解】解:(1)证明:以A为原点,AB为x轴,AD为y轴,AS为z轴,建立如图所示的空间直角坐标系,则,(2)易知,平面SAB的一个法向量为,由图知,设平面SCD的法向量为,则,取,得平面SCD的一个法向量为,设平面SAB与平面SCD的夹角为,则,故平面SAB与平面SCD夹角的大小为45【点睛】本题主要考查了利用空间向量证明直线垂直与二面角的空间向量求法,属于中等题型.22.已知椭圆的左焦点为,直线与x轴交于点,过点且倾斜角为30的直线l交椭圆于A,B两点(1)求直线l和椭圆E的方程;(2)求证:点在以线段AB为直径的圆上.【答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安庆市2025-2026学年七年级上学期语文期末测试试卷
- 阿勒泰市2025-2026学年八年级下学期语文月考模拟试卷
- 安徽省合肥市庐江县2023-2024学年高三下学期高考第一模拟考试(一模)语文试题及答案
- 2025 年小升初北京市初一新生分班考试语文试卷(带答案解析)-(人教版)
- 全国2025年4月概率论与数理统计(经)自考试题
- 社区表格基础知识培训课件
- 2025年云南省昭通市昭阳区中考物理模拟试卷(6月份)-自定义类型(含答案)
- 北京现房交易合同范本
- 关于典当标准合同范本
- 林地树木出售合同范本
- 教师职业技能提升培训教程
- 2025年版房屋租赁合同模板下载
- 2025年第三类医疗器械培训试卷(含答案)
- 2025年医院财务科招聘考试题目(附答案)
- 面试指导:空中乘务面试常见问题与答案
- 2025年医德医风培训试题(附参考答案)
- 二人合伙开店的合同协议
- 北师大版五年级数学下册常考题:分数除法(单元测试)含答案
- 2026届高考生物一轮复习:人教版必修1《分子与细胞》知识点考点背诵提纲
- 高血压病例汇报
- 2025年全国青少年“学宪法、讲宪法”知识竞赛题库及答案
评论
0/150
提交评论