




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考压轴题瓶颈系列之浙江卷数列【见证高考卷之特仑苏】1. 【2014年.浙江卷.理19】(本题满分14分)已知数列和.若为等比数列,且()求与;()设。记数列的前项和为.(i)求;(ii)求正整数,使得对任意,均有2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列的首项 (),设数列的前n项和为,且,成等比数列()求数列的通项公式及()记,当时,试比较与的大3. 【2008年.浙江卷.理22】(本题14分)已知数列,求证:当时,();();()。4. 【2007年.浙江卷.理21】(本题15分)已知数列中的相邻两项是关于的方程的两个根,且()求;()求数列的前项的和;()记,求证:5. (2015年浙江卷第20题) (1)求证:(2)设数列的前项和为,证明:6.【2016高考浙江理数】设数列满足,(I)证明:,;(II)若,证明:,【例题讲解之伊利奶粉】例1(浙江省新高考研究联盟2017届高三下学期期初联考)已知数列满足a1=3, , 设.(I)求的通项公式;(II)求证:;(III)若,求证:23.例2(浙江省温州中学2017届高三3月高考模拟)正项数列满足,()求的值;()证明:对任意的,;()记数列的前项和为,证明:对任意的,例3(浙江省温州市十校联合体2017届高三上学期期末)已知数列满足,(1)若数列是常数列,求m的值;(2)当时,求证:;(3)求最大的正数,使得对一切整数n恒成立,并证明你的结论。例4(浙江省温州市2017届高三下学期返校联考)设数列均为正项数列,其中,且满足: 成等比数列,成等差数列。()(1)证明数列是等差数列;(2)求通项公式,。()设,数列的前项和记为,证明:。例5(浙江省台州市2017届高三上学期期末质量评估)已知数列满足,(1) 求证(2) 求证(3) 若证,求证整数k的最小值。例6.(浙江省杭州高级中学2017届高三2月高考模拟考试)数列定义为,(1)若,求的值;(2)当时,定义数列,是否存在正整数,使得。如果存在,求出一组,如果不存在,说明理由。例7(2017年浙江名校协作体高三下学期)函数,()求方程的实数解;()如果数列满足,(),是否存在实数,使得对所有的都成立?证明你的结论()在()的条件下,证明:例8(2017年4月湖州、衢州、丽水三地教学质量检测)数列满足,(1)证明:;(2)设的前项的和为,证明:. 例9(2017年4月浙江金华十校联考)数列满足,(1) 求证:;(2)求证:例10.(2017年4月高二期中考试)数列满足,其中前n项和为,其中前n项和为(1) 求证:;(2)求证:(3)求证:例11(2017年4月稽阳联谊高三联考)已知数列满足, 其中的前n项和为,(1) 求证:;(2)求证:例12(2017年4月温州市普通高中模拟考试)已知数列的各项都是正数, 其中的前n项和为, 若数列为递增数列求的取值范围例13:(2016浙江高考样卷20题) 已知数列满足,() 证明:数列为单调递减数列;() 记为数列的前项和,证明:例14:(2016杭州市第一次模拟质量检测)已知数列满足,(1) 证明:;(2) 证明:数列前n项的和为,那么例15:(2016宁波市第一次模拟质量检测)对任意正整数n,设是方程的正根,求证:(1) (2) 例16:(2016温州市第一次模拟质量检测)数列满足,() 证明:;()若,求证:(本题与例13的题型一样)例17:(2016年金华市模拟)已知数列的首项为,且,()求证:;()令,求证: 例18:(2016名校联盟第一次模拟20)设数列满足.()若,求实数的值;()若,求证:.例19.(2016嘉兴一模)数列各项均为正数,且对任意的,有()求的值;()若,是否存在,使得,若存在,试求出的最小值,若不存在,请说明理由 (本题就是例5,不过要判断出的界限)例20.(2016浙江六校联考20)已知数列满足:;()若,求的值; (II)若,记,数列的前n项和为,求证:例21(2016丽水一模20)已知数列满足:,且()证明:;()若不等式对任意都成立,求实数的取值范围例22.(2016十二校联考20)已知各项为正的数列满足(I)证明:;(II)求证:.例23. (2016宁波十校20)设各项均为正数的数列的前项和满足.()若,求数列的通项公式;()在()的条件下,设,数列的前项和为,求证:.例24. (2016桐乡一模20)设函数若 对任意的恒成立数列满足.()确定的解析式;()证明:;()设为数列的前项和,求证:.例25.(2016大联考 20).已知数列满足,其中常数.(1)若,求的取值范围;(2)若,求证:对任意,都有;(3)若,设数列的前项和为.求证:.例26.(2016宁波二模)已知数列中,.()若t=0,求数列的通项公式。()若t=1,求证:。例27.(嘉兴二模 20)已知数列与满足,且,其中()求与的关系式;()求证:.例28. (2016温州二模20)设正项数列满足:,且对任意的,均有成立.(1)求的值,并求的通项公式;(2)()比较与的大小; ()证明:.例29 (2016五校联考二20)已知正项数列满足:,其中为数列的前项的和。()求数列的通项公式;()求证:。例30.(2016诸暨质检20)已知数列的各项都大于1,且()求证:()求证:【课后习之三鹿奶粉】例1设数列满足,为的前项和.证明:对任意,()当时,;()当时,;()当时,.例2已知数列满足(1) 求证:(2) 数列的前,求证:例3已知各项均为正数的数列,前项和为,且.(1) 求证:(2)求证:例4设是函数的图象上的任意两点.(1)当时,求的值;(2)设,其中,求;(3)对于(2)中的,已知,其中,设为数列的前项的和,求证:.例5给定正整数和正数.对于满足条件的所有等差数列 (1)求证:例6已知数列满足,设 .()求的前项和及的通项公式;()求证:;(III)若,求证:.例7已知数列满足,(1)若数列是常数列,求m的值;(2)当时,求证:;(3)求最大的正数,使得对一切整数n恒成立,并证明你的结论.例8已知数列的前n项和为且.(1)求证为等比数列,并求出数列的通项公式;(2)设数列的前n项和为,是否存在正整数,对任意若存在,求出的最小值,若不存在,请说明理由例9已知数列满足:.()证明:;()证明:.例10已知数列满足:,(),证明:当时,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司钢材热处理工效率提升考核试卷及答案
- 公司拖拉机电器装试工三级安全教育(公司级)考核试卷及答案
- 公司气体脱硫装置操作工内部技能考核试卷及答案
- 公司琴弦制作工测试考核试卷及答案
- 工程项目智能化管理与优化方案
- 公司微波铁氧体器件调测工合规性考核试卷及答案
- 林下中药材种植基地项目风险评估报告
- xx工业园区配套污水处理及回用项目风险评估报告
- 建设工程信息化管理方案
- 园林施工团队协作方法
- 都江堰水利工程课件
- 液氮运输投标方案(3篇)
- 《2019年甘肃省职业院校技能大赛学前教育专业教育技能赛项竞赛规程(高职教师组)》
- 护理工作的模式
- 《智能制造技术与工程应用》全套教学课件
- TSG T5002-2017 电梯维护保养规则
- 2025年全国保密教育线上培训考试试题库附答案【考试直接用】含答案详解
- 2025年度全国普通话水平测试20套复习题库及答案
- 2025心肺复苏术课件
- T-CECS 10400-2024 固废基胶凝材料
- 初中竞选安全部部长
评论
0/150
提交评论