全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知能优化训练学生用书 P331设x0为可导函数f(x)的极值点,则下列说法正确的是()A必有f(x0)0Bf(x0)不存在Cf(x0)0或f(x0)不存在Df(x0)存在但可能不为0答案:A2下列函数存在极值的是()AyByxexCyx3x22x3 Dyx3解析:选B.A中f(x),令f(x)0无解,且f(x)为双曲线A中函数无极值B中f(x)1ex,令f(x)0可得x0.当x0,当x0时,f(x)0.yf(x)在x0处取极大值,f(0)1.C中f(x)3x22x2,424200.yf(x)无极值D也无极值故选B.3函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有()A1个 B2个C3个 D4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个4yx36xa的极大值为_解析:y3x260,得x.当x时,y0;当x时,y0,f(x)5ax2(x21)当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,0)0(0,1)1(1,)f(x)000f(x)极大值无极值极小值由上表可知,当x1时,f(x)有极大值;当x1时,f(x)有极小值若a0)有极大值,求m的值解:f(x)3x2mx2m2(xm)(3x2m),令f(x)0,则xm或xm.当x变化时,f(x),f(x)变化如下表x(,m)m(m,m)m(m,)f(x)00f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 联合优化与综合工艺改进研究-洞察及研究
- 金融科技在保险咨询行业的应用前景-洞察及研究
- 特色小镇休闲农业产业项目2025年特色农产品品牌建设可行性研究报告
- 人工智能在教育评价中的应用:小学英语课堂效果过程性评价指标体系构建与优化教学研究课题报告
- 《物联网技术在智能家居系统中的智能家居环境舒适度优化研究》教学研究课题报告
- 脑机接口技术在神经科学实验研究中的应用-洞察及研究
- 餐饮店安全事故处置方案
- 安全隐患排查情况自查报告
- 成分与细胞信号传导-洞察及研究
- 屋面改造施工组织设计方案
- 工地窒息事故应急处置措施
- 口腔诊所的数字化管理与运营
- 中国私人诊所行业投资分析、市场运行态势研究报告-智研咨询发布(2025版)
- T-DGGC 015-2022 盾构机组装、调试及验收技术标准
- 驾驶员年度安全培训计划
- 消防器材检查记录表
- 中华人民共和国建筑法
- 完整版:美制螺纹尺寸对照表(牙数、牙高、螺距、小径、中径外径、钻孔)
- AC-20C沥青混合料生产配合比以及配合比的验证报告
- 人文英语4-机考题库及答案
- 体检中心医护培训课件
评论
0/150
提交评论