开放性问题教案1(汪国银)_第1页
开放性问题教案1(汪国银)_第2页
开放性问题教案1(汪国银)_第3页
开放性问题教案1(汪国银)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

开放性问题教案1(汪国银) 宝应县实验初中初三数学中考第二轮复习教学案开放性问题的探究教学目标 1、使学生了解开放性问题及其特点。 2、通过开放性问题的探究,增强学生发现问题、提出问题的意识。 3、通过开放性问题的探究,体会掌握基础知识,形成基本技能,感悟思想方法的重要性。 教学重难点教学流程活动一问题导入 1、(10贵州毕节)写出含有字母x、y的五次单项式(只要求写出一个) 2、(10江苏盐城)写出图象经过点(1,1)的一个函数关系B式。 3、(10安徽改编)如图,在ABC中,ABAC,ADBC,D为垂足由以上两个条件可得(写出一个结论)D CA 124、(10陕西)如图在ABC中D是AB边上一点,连接CD,要使ADC与ABC相似,还需要添加一个条件,这个条件可以是.学生独立练习,口答交流,初步认识开放性问题及其特点。 设计意图通过中考真题的训练,及此类题在中考中被广泛应用,引入本课,揭示课题。 活动二问题探究 1、(10昆明)如图,已知点B、F、C、E在一条直线上,B=E,BF=CE。 求证AB CDE F马小虎同学在解答这道题时不小心打翻了墨水瓶,污染了其中的一个已知条件,请你帮助他添加一个合适的条件(不添加辅助线),使他能完成此道题你添加的条件是证明A BC EF D一学生板演练习,其他学生补充交流。 教师应重点关注、引导学生进行方法提炼与总结。 设计意图通过学生自主添加条件证明三角形全等,使学生进一步加深对全等三角形的几种判定方法的理解,并能灵活运用,同时,也让学生了解“条件开放”问题的探究方法。 2、(05荆州)有一块方角形钢板如下图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出)。 (备用图形)(备用图形)(策略一)(策略二)(略三)学生独立作图,学生代表展示分割方案,并说明分割的依据。 教师引导学生思考还有哪些图形(中心对称图形)可以采用这样的方法分割,也可进一步启发学生将常见的中心对称图形组合,再分割,以加深学生的认识和理解。 设计意图本题属于“策略开放”,通过“不规则图形面积等分”不同策略的练习,让学生体会转化数学思想方法,掌握题中所考查的知识点。 3、如图,在RtABC中,C=90,BAC=60,AB=8。 半径为3的M与射线BA相切,切点为N,且AN=3。 将RtABC绕点A顺时针旋转120后得到RtADE,点B、C的对应点分别是点D、E。 (1)画出旋转后的RtADE。 (2)观察图形,猜想点M是否在DAE的角平分线上。 (3)进一步观察图形,你还能提出哪些不同类型的问题?CMBA N学生独立完成第 (1)、 (2)两问并交流,第 (3)问采取挑战的方式进行,即由一学生提出问题,另一学生解答。 设计意图本题为“结论开放”题,通过“学生问,学生答”,以智慧启迪智慧,刺激学生发现问题的欲望,增强提出问题的意识,使学生明白提出问题是以基本知识、基本图形和基本结论为基础和前提的。 活动三综合提升(10宁波)如图,已知P的半径为2,圆心P在抛物线y?与x轴相切时,圆心P的坐标为_。 变式一若将抛物线“y?12x?1上运动,当P2121x?1”改为“y?x2?b”,22请自选一个你喜欢的整数值b=,并求圆心P的坐标为_。 变式二若抛物线“y?121x?1”改为“y?x2?b”,试就b22的取值范围讨论P与x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论