




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 4反证法 路边苦李 王戎7岁时 与小伙伴们外出游玩 看到路边的李树上结满了果子 小伙伴们纷纷去摘取果子 只有王戎站在原地不动 王戎回答说 树在道边而多子 此必苦李 小伙伴摘取一个尝了一下果然是苦李 王戎是怎样知道李子是苦的呢 他运用了怎样的推理方法 小故事 假设李子不是苦的 即李子是甜的 那么这长在人来人往的大路边的李子会不会被过路人摘去解渴呢 那么 树上的李子还会这么多吗 这与事实矛盾吗 说明李子是甜的这个假设是错的还是对的 所以 李子是苦的 思考 王戎的推理方法是 假设李子不苦 则因树在 道 边 李子早就被别人采摘 这与 多子 产生矛盾 所以假设不成立 李为苦李 发生在身边的例子 妈妈 小华 听说邻居小芳全家这几天在外地旅游 小华 不可能 我上午还在学校碰到了她和她妈妈呢 上述对话中 小华要告诉妈妈的命题是什么 他是如何推断该命题的正确性的 小芳全家没外出旅游 小芳全家没外出旅游 假设小芳全家外出旅游 那么今天不可能碰到小芳 与上午在学校碰到小芳和她妈妈矛盾 所以假设不成立 所以小芳全家没有外出旅游 定义 在证明一个命题时 有时先假设命题不成立 从这样的假设出发 经过推理得出和已知条件矛盾 或者与定义 公理 定理等矛盾 从而得出假设命题不成立是错误的 即所求证的命题正确 这种证明方法叫做反证法 反证法的步骤 一 提出假设 二 推理论证 三 得出矛盾 四 结论成立 动动脑 什么时候运用反证法呢 例求证 在同一平面内 如果一条直线和两条平行直线中的一条相交 那么和另一条也相交 已知 如图 a b c与a相交于点p 求证 c与b相交 试一试 1 2 两直线平行 同位角相等 这与已知的 1 2矛盾 假设不成立 证明 假设结论不成立 则a b 合作学习 求证 在同一平面内 如果两条直线都和第三条直线平行 那么这两条直线也互相平行 1 你首先会选择哪一种证明方法 2 如果你选择反证法 先怎样假设 结果和什么产生矛盾 定理 已知 如图 l1 l2 l2 l3 求证 l l l l l l 则过点p就有两条直线l l 都与l 平行 这与 经过直线外一点 有且只有一条直线平行于已知直线 矛盾 证明 假设l 不平行l 则l 与l 相交 设交点为p p 所以假设不成立 所求证的结论成立 即l l 合作学习 求证 在同一平面内 如果两条直线都和第三条直线平行 那么这两条直线也互相平行 定理 3 能不用反证法证明吗 你是怎样证明的 已知 如图 l1 l2 l2 l3 求证 l1 l3 l p l1 l2 l2 l3 直线l必定与直线l1 l3相交 在同一平面内 如果一条直线和两条平行直线中的一条相交 那么和另一条直线也相交 证明 作直线l交直线l2于点p 2 1 3 两直线平行 同位角相等 l1 l3 同位角相等 两直线平行 定理 在同一平面内 如果两条直线都和第三条直线平行 那么这两条直线也互相平行 几何语言表示 a b b c a c 已知 如图 直线l与l1 l2 l3都相交 且l1 l3 l2 l3 求证 1 2 l1 l2 l3 l 1 2 证明 l1 l3 l2 l3 已知 l1 l2 在同一平面内 如果两条直线都和第三条直线平行 那么这两条直线也互相平行 1 2 两直线平行 同位角相等 学以致用 1 写出下列各结论的反面 1 a b 2 a 0 3 b是正数 4 a b 5 至多有一个 6 至少有一个 a 0 b是0或负数 a不垂直于b 一个也没有 至少有两个 变式训练 1 a b 的反面应是 a a b b a b c a b d a b或a b 2 用反证法证明命题 三角形中最多有一个是直角 时 应如何假设 d 假设三角形中有两个或三个角是直角 常用的互为否定的表述方式 是 不是 存在 不存在平行 不平行 垂直 不垂直等于 不等于 都是 不都是大于 不大于 小于 不小于至少有一个 一个也没有至少有三个 至多有两个至少有n个 至多有 n 1 个 至多有一个 至少有一个 一个也没有 至少有两个 如图 在 abc中 若 c是直角 那么 b一定是锐角 你能用反证法证明以下命题吗 延伸拓展 证明 假设结论不成立 则 b是 或 这与 矛盾 当 b是 时 则 这与 矛盾 综上所述 假设不成立 b一定是锐角 直角 钝角 直角 b c 180 三角形的三个内角和等于180 钝角 b c 180 三角形的三个内角和等于180 当 b是 时 则 用反证法证题时 应注意的事项 1 周密考察原命题结论的否定事项 防止否定不当或有所遗漏 2 推理过程必须完整 否则不能说明命题的真伪性 3 在推理过程中 要充分使用已知条件 否则推不出矛盾 或者不能断定推出的结果是错误的 归纳 宜用反证法证明的题型 1 以否定性判断作为结论的命题 2 某些定理的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 想和做的课件
- 2026届山东省临沂市临沭县一中高一化学第一学期期末学业水平测试模拟试题含解析
- 幼儿园幼儿户外活动方案
- 2026届江西省上饶县二中化学高三上期末达标检测模拟试题含解析
- 大学组织联谊活动策划方案
- 隐形正畸面试题及答案
- 中建五局考试试题及答案
- 常量池面试题及答案
- 家电公司合同审核管理规定
- 温医护理考试试题及答案
- 2025-2030中国家政服务从业人员培训体系与职业发展白皮书
- 2025年安全风险分级管控培训考试试题(附答案)
- 厂区用电安全管理制度
- 初中英语新人教版八年级上册全册单词(2025秋)
- 2025年广西中考道德与法治试题答案详解讲评课件
- 农贸市场食品安全监管与能力提升培训
- 成人重症患者人工气道湿化护理专家共识解析与临床应用
- 模具订单流程管理规范
- 残疾孩子开学活动方案
- 英语作文初中教学课件
- 干湿垃圾分离培训
评论
0/150
提交评论