



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课时空间向量与空间角单元过关试卷一、基础过关1若直线l的方向向量与平面的法向量的夹角等于150,则直线l与平面所成的角等于()A30 B60C150 D以上均错2直线l1,l2的方向向量分别是v1,v2,若v1与v2所成的角为,直线l1,l2所成的角为,则()A BCcos |cos | Dcos |cos |3已知A,P,平面的一个法向量n,则直线PA与平面所成的角为()A30 B45C60 D1504在正三棱柱ABCA1B1C1中,若ABBB1,则AB1与C1B所成角的大小为()A60 B90C105 D755.在正四面体ABCD中,点E为BC中点,点F为AD中点,则异面直线AE与CF所成角的余弦值为 ()A. B.C. D.6若两个平面,的法向量分别是n(1,0,1),(1,1,0)则这两个平面所成的锐二面角的度数是_7二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB4,AC6,BD8,CD2,则该二面角的大小为_8在空间四边形OABC中,OBOC,AOBAOC,则cos,的值为_二、能力提升9.如图,在三棱锥VABC中,顶点C在空间直角坐标系的原点处,顶点A、B、V分别在x、y、z轴上,D是线段AB的中点,且ACBC2,VDC.当时,求异面直线AC与VD所成角的余弦值10.如图,已知点P在正方体ABCDABCD的对角线BD上,PDA60.(1)求DP与CC所成角的大小;(2)求DP与平面AADD所成角的大小11.如图,四棱锥FABCD的底面ABCD是菱形,其对角线AC2,BD.CF与平面ABCD垂直,CF2.求二面角BAFD的大小三、探究与拓展12.如图,在多面体ABCDEF中,四边形ABCD是正方形,EFAB,EFFB,AB2EF,BFC90,BFFC,H为BC的中点(1)求证:FH平面EDB;(2)求证:AC平面EDB;(3)求二面角BDEC的大小答案1B2.D3.C4.B5.C6607.60809解由于ACBC2,D是AB的中点,所以C(0,0,0),A(2,0,0),B(0,2,0),D(1,1,0)当时,在RtVCD中,CD,故V(0,0,)所以(2,0,0),(1,1,)所以cos,.所以异面直线AC与VD所成角的余弦值为.10.解如图,以D为原点,DA为单位长建立空间直角坐标系Dxyz.则(1,0,0),(0,0,1)连接BD,BD.在平面BBDD中,延长DP交BD于H.设(m,m,1) (m0),由已知,60,由|cos,可得2m.解得m,所以.(1)因为cos,所以,45,即DP与CC所成的角为45.(2)平面AADD的一个法向量是(0,1,0)因为cos,所以,60.可得DP与平面AADD所成的角为30.11.解过点A作AE平面ABCD.以A为坐标原点,、方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)于是B,D,F(0,2,2)设平面ABF的法向量n1(x,y,z),则由得令z1,得所以n1(,1,1)同理,可求得平面ADF的法向量n2(,1,1)由n1n20知,平面ABF与平面ADF垂直,所以二面角BAFD的大小等于.12(1)证明四边形ABCD为正方形,ABBC.又EFAB,EFBC.又EFFB,EF平面BFC.EFFH,ABFH.又BFFC,H为BC的中点,FHBC.FH平面ABC.以H为坐标原点,为x轴正方向,为z轴正方向,建立如图所示的空间直角坐标系设BH1,则A(1,2,0),B(1,0,0),C(1,0,0),D(1,2,0),E(0,1,1),F(0,0,1)设AC与BD的交点为G,连接GE,GH,则G(0,1,0),(0,0,1)又(0,0,1),.又GE平面EDB,HF平面EDB,FH平面EBD.(2)证明(2,2,0),(0,0,1),0,ACGE.又ACBD,EGBDG,AC平面EDB.(3)解(1,1,1),(2,2,0)设平面BDE的法向量为n1(1,y1,z1),则n11y1z10,n122y10,y11,z10,即n1(1,1,0)(0,2,0),(1,1,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川川藏工业园区发展有限责任公司招聘合同制员工总排名人员及安排笔试历年参考题库附带答案详解
- 三国的谋士手册
- 餐饮业供应链整合与2025年成本控制中的供应链金融风险管理报告
- 矫正优惠活动方案
- 美术低价活动方案
- 研究电影活动方案
- 石材定制活动方案
- 端午美发活动方案
- 线下展馆活动策划方案
- 组织美食活动方案
- 剪彩仪式方案超详细流程
- 2024年二级建造师考试《矿业工程管理与实物》真题及答案
- 人教版初中九年级化学上册第七单元课题1燃料的燃烧第2课时易燃物和易爆物的安全知识合理调控化学反应课件
- 发电厂继电保护培训课件
- 校企“双元”合作探索开发轨道交通新型活页式、工作手册式教材
- 肺癌全程管理
- 2024年考研英语核心词汇
- 信息系统定期安全检查检查表和安全检查报告
- 颅脑外伤患者的麻醉管理专家共识(2021版)
- 质量警示卡模板
- DZ∕T 0219-2006 滑坡防治工程设计与施工技术规范(正式版)
评论
0/150
提交评论