



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导 学 案 教者:刘立恒 序号:8 课 题第一章 特殊平行四边形3.正方形的性质与判定(二) 课 型 新授 教材分析在第一课时学习了正方形的性质,本节课主要是对正方形的判定进行推理证明,而前面的探索过程和方法为本节课的推理证明提供了铺垫,为学生提供了相应的定理证明思路 学情分析在相关知识的学习过程中,学生经历了“探索发现猜想证明”的过程,并初步体会了获得猜想后还应予以证明的意义,感受到了合情推理与演绎推理的相互依赖和相互补充的辨证关系,并且学生具有了一定的推理证明的能力。 学习目标1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。3.使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用。 学习重点掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。 学习难点掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。 导 学 过 程第一环节:情景引入活动内容:问题:将一张长方形纸对折两次,然后剪下一个角,打开,怎样 剪才能剪出一个正方形?(学生动手折叠、思考、剪切)正方形的判定定理:1. 对角线相等的菱形是正方形。2. 对角线垂直的矩形是正方形。3. 有一个角是直角的菱形是正方形。教师可以课件展示下面的框架图,复习巩固平行四边形、矩形、菱形、正方形之间的关系。第三环节:猜想结论,分组验证FECABCGHFEDABCGHFEDAB活动内容1:图1-8-1 图1-8-2 图1-8-3问题:1.如图,在ABC中,EF为ABC的中位线,若BEF=30,则A= . 若EF=8cm, 则AC= .2.在AC的下方找一点D,做CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?3.四边形EFGH的形状有什么特征?活动内容2:问题:如果四边形ABCD变为特殊的四边形,中点四边形EFGH会有怎样的变化呢?活动内容3:学生以数学小组的形式,在众多的特殊四边形(平行四边形,矩形,菱形,正方形,等腰梯形,梯形和直角梯形)中选择一种自己感兴趣的原四边形来研究中点四边形,并验证结论的正确性。ABCDEFGHABCDEFGH图1-8-4 图1-8-5 图1-8-6 图1-8-7图1-8-8 图1-8-9 图1-8-10得出结论:平行四边形的中点四边形是平行四边形;矩形的中点四边形是菱形;菱形的中点四边形是矩形;正方形的中点四边形是正方形;等腰梯形的中点四边形是菱形;直角梯形的中点四边形是平行四边形;梯形的中点四边形是平行四边形。活动内容4:问题:1.矩形和等腰梯形是形状不同的四边形,为什么中点四边形都由平行四边形变化为菱形?2.平行四边形变化为菱形需要增加什么条件?3.你是从什么角度考虑的?4.你从哪儿得到的启发?5.你能用你的发现解释其它的图形变化吗?例如:原四边形为菱形,其中点四边形为矩形?概括出规律:决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系。(1) 若对角线相等,则中点四边形EFGH为菱形;(2) 若对角线互相垂直,则中点四边形EFGH为矩形;(3) 若对角线既相等,又垂直,则中点四边形EFGH为正方形;(4) 若对角线既不相等,又不垂直,则中点四边形EFGH为平行四边形。BCDAHGFE图1-8-11 图1-8-12 图1-8-13 图1-8-14第四环节:学以致用活动内容:(图形发散练习)利用几何画板,拖动A点使四边形ABCD的图形变化进行研究。图1-8-15 图1-8-16 图1-8-17 图1-8-18第五环节:课堂小结活动内容:1本节课重点学习了什么知识,应用了哪些数学思想和方法?2通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?第六环节:布置作业必做:1.习题1.8(1、3)2.用所学中点四边形的知识,设计一个基本图形,然后在方格纸内通过平移、旋转或轴对称进行图案设计。选做:习题1.8(5) 评注本环节中教师可以鼓励操作快的学生帮助有困难的学生,请同学到讲台前讲解自己的做法和判断依据,顺势引导学生总结出正方形的判定定理复习巩固平行四边形、菱形、矩形、正方形的性质与判定定理,让学生尝试综合运用特殊四边形的性质和判定解决问题。通过问题串,复习三角形中位线性质定理和命题“依次连接任意四边形各边的中点可以得到一个平行四边形”。以问题串的形式引导学生逐步深入思考,前2个问题的设置帮助学生回忆特殊四边形的性质与判定定理,第3、4个问题帮助学生揭示变化的原因:矩形和等腰梯形的对角线有相同的性质“对角线相等”,而且其它中点四边形的变换也和原四边形的对角线有关系。有了前4问的铺设,第5个问题可以通过类比的思想解决;同时让学生体会由一般到特殊再到一般的归纳思想方法,进一步提高学生的数学表达能力。 培养学生的归纳能力,使学生形成完整的知识结构,总结研究数学问题的一般
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目居间协议居间协议合同8篇
- 2025家居电器分销合作合同协议书
- 2025新混凝土工程合同版
- 2025家具买卖合同样本
- 2025合同依据多样化分类标准展现出多样化类型
- 物质的量在化学实验中的应用教案(以核心素养为本的教学设计案例)
- 机械厂仓库规划布局规章
- 2025年商品房与经济适用房买卖合同差异解析
- 湖北事业单位笔试真题2025
- 考试我想和你握握手(说课稿)2025-2026学年初三下学期教育主题班会
- “城镇可持续发展关键技术与装备”重点专项2024年度项目申报指南(征求意见稿)
- 铜仁市大学生乡村医生专项计划招聘考试真题
- 光伏项目投标方案(技术方案)
- 模块化炼化设备的设计与集成
- 光伏发电功率预测系统
- HY/T 0404-2024潮流能、波浪能发电装置海试过程控制规范
- 设备维护服务方案(2篇)
- 医院检验科实验室生物安全程序文件SOP
- 手术前术前准备未执行的应急预案
- JJG 270-2008血压计和血压表
- T-CARM 002-2023 康复医院建设标准
评论
0/150
提交评论