



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2实数教学设计 (一)教学目标 1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。2 让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点(二)教材分析“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由、激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。重点:无理数、实数的意义,在数轴上表示实数。难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。(三)学生分析 学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。思维仍较直观,无理数显得比较抽象,难以理解。对的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。(四)设计理念 让学生主动参与合作交流, 探索、发现,注重知识形成的过程(五)教学方法 启发式、探索式教学(六)教学过程复习旧知,揭示矛盾,引入概念复习前面所学的有理数的分类,既然在1与2之间就不是整数,也不是分数,也就是说 不是有理数,但由此题可知确实是存在的,同时也是如此。总结的特征:无限、不循环,得到无理数的概念。(以上学生合作探索特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。)举例说出无理数,巩固对无理数的理解课本p73 课内练习2 掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法叙述数史,剖析概念,扩展数集 讲述故事,介绍无理数的来历 师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的? 有生会答:“有道理的数”与“无道理的数”。师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)有理数和无理数之战 在一个早晨,同学小毅一觉醒来,发现窗户外的山坡上在打仗。仔细一看,一边打着“有理数”的大旗子,一边打着“无理数”的大旗子。有理数和无理数为什么要打仗?哦,原来是为了名字。听听无理数司令怎么说:“我们无理数和有理数同样是数,为什么他们有理,我们无理?我们究竟哪点儿无理?”对呀!无理怎么会存在嘛!小毅心里也在琢磨。“因为人们最开始发现的是有理数,见到我们无理数时还不理解,所以取了无理数这么难听的名字。可是现在,人们已经充分认识我们了,就该给我们摘掉无理的帽子才对!”(教师简单说明无理数的来历,培养学生勇于发现真理的科学精神) 问:听了故事后你们有什么看法,你认为他们根本的区别在哪里?(学生讨论)教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。2.2实数的概念: 有理数和无理数统称为实数(通过故事不仅增加趣味性,更重要的在于强化无理数与有理数的本质区别,得实数的意义。而且介绍数学史,对揭示数学知识的来源和应用,创造一种探索与研究的气氛,激发学生对数学的兴趣等都起到重要作用)3练习讨论,反馈调整,巩固概念 (1)无理数的相反数、绝对值由前面有理数的相反数、绝对值的意义,类似得到无理数的相反数、绝对值的意义。(2) 练习:在 1/7; ;0;0.3 ; ;0.3131131113(两个3之间依次多一个1)中属于有理数的有:属于无理数的有: 属于实数的有:说出以上各数的相反数、绝对值; 练习:(抢答)判断下面的语句对不对?并说明判断的理由。无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数;有理数都是实数,实数不都是有理数;实数都是无理数,无理数都是实数;实数的绝对值都是非负实数;有理数都可以表示成分数的形式。(通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。)2数形结合,突破难点,深化概念(前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。)我们已经知道每一个有理数都可以用数轴上的点表示出来,那么数轴上的每一个点都表示有理数吗?(思考)由书本图3.2可知,在数轴正方向上取OA的长等于图3.2中阴影正方形的边长,则点A表示 ,即无理数可以在数轴上找到对应点。可见,数轴上的点对应的数,不都是有理数。(显示数轴)像每个有理数都可以在数轴上找到一个对应点一样,每个无理数也都可以在数轴上找到一个对应点,因此,可以说,每个实数都可以在数轴上找到一个对应点。(想一想:为什么?)反过来,数轴上的每一点也都对应一个有理数或无理数,也就是说,数轴上的每一点都对应一个实数。把这两件事合在一起,我们就说全体实数和数轴上的点一一对应。利用课件显示帮助理解以上内容,数形结合,突破本课的难点:在数轴上用绿色闪烁圆点表示有理数,但这些并不能布满直线,说明数轴上的每一个点并不都表示有理数。再用红色闪烁圆点表示无理数,讲到有理数时绿色圆点闪烁,讲到无理数时绿色圆点闪烁,讲到实数时红、绿圆点同时闪烁,这才成为一整条直线,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念。5类比迁移,大小比较,例题分析 例 把下列实数表示在数轴上,并比较它们的大小(用“”号连接):-1.4, 3.3, ,-,1.5(1)让学生阅读题目,讨论比较大小的方法,培养学生的自学能力和探索精神,学会类比迁移。比较学生的解题思路,利用数轴比较或利用法则比较的(一般无理数需取近似值),都予以鼓励,抓住一题多解,培养学生思维的发散性和流畅性,有利于学生整体素质提高。着重讲解在数轴上如何表示无理数,利用数轴进行大小比较根据书本图3.2 画表示的点的方法:画边长为1的正方形的对角线 在数轴上表示无理数通常有两种情况:如; 尺规可作的无理数 尺规不可作的无理数 ,只能近似地表示理清关系 ,概括方法,课堂小结 6.1 是人们最早认识的无理数之一,这节课我们 从谈起,谈到了什么? (1)知识方面:(2)思维方法:用有理数逼近无理数,求无理数的近似值;数形结合的数学思想6.2启发学生提出新的疑问,培养学生创造性思维从谈起,我们还可以谈些什么? 例如: 其他无理数?圆周率的近似值?由出发,可以造出哪些无理数?无理数与有理数的和、差、积等一定是无理数吗?无理数与无理数的和、差、积等一定是无理数吗?等等一系列问题,有待于我们进一步探索、研究7 布置作业 A组必做, B、C组选做附: 课后阅读化循环小数为分数(七)设计后感本课精心设计问题情景,积极引导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产6万吨岩片真石漆项目可行性研究报告
- 中药材种植基地可行性研究报告
- 二零二五年度文化产业园区场地买卖合同
- 二零二五年度陶瓷产品包装设计服务合同
- 二零二五年度深基坑工程安全施工劳务分包合同要求
- 2025版茶叶文化节场地租赁与赞助合同
- 二零二五年度屋顶防水防漏工程设计与施工合同
- 二零二五年度白糖加工企业专用白糖采购及仓储协议
- 二零二五年度带娃离婚协议:子女抚养权与财产分割协议
- 二零二五版离婚协议及财产转让法律适用指南
- 安徽省A10联盟2024-2025学年高二上学期9月初开学摸底考数学(B卷)试题2
- 干部廉政档案登记表
- 吊篮施工安全技术交底
- 第七单元 专题突破9 聚焦变异热点题型-2025年高中生物大一轮复习
- 2023年海南省社区网格员真题九十天冲刺打卡单选题+多选题+填空题+判断题+客观题A卷
- 《初中数学变式题》课件
- 个人替公司代付协议
- XF-T 3004-2020 汽车加油加气站消防安全管理
- 2.2算法的概念及其描述课件人教中图版高中信息技术必修1
- 出货管理实施手册标准版
- 2000立方米液化石油气球罐设计
评论
0/150
提交评论