几何五大模型专项复习训练(附详细答案).doc_第1页
几何五大模型专项复习训练(附详细答案).doc_第2页
几何五大模型专项复习训练(附详细答案).doc_第3页
几何五大模型专项复习训练(附详细答案).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

炒饭出品必定精品几何五大模型1、如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=AB,已知四边形EDCA的面积是35,求三角形ABC的面积. ( 【解】根据定理:=,所以四边形ACDE的面积就是6-1=5份,这样三角形3556=42。2、四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是_米. 【解】小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4,所以每个三角形的面积是1,这个图形是“玄形”,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1。3、如图在长方形ABCD中,ABE、ADF、四边形AECF的面积相等。AEF的面积是长方形ABCD面积的_ (填几分之几)。 。【解】连接AC,首先ABC和ADC的面积相等,又ABE和ADF的面积相等,则AEC和AFC的面积也相等且等于ABCD的1/6,不难得AEC与ABE的面积之比为1/2,由于这两个三角形同高,则EC与BE之比为1/2,同理FC与DF之比也为1/2。从而ECF相当于ABCD面积的1/18,而四边形AECF相当于ABCD面积的1/3,从而答案为1/3-1/18=5/18。4、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_ (01年同方杯)【解】设图示两个三角形的面积分别为a和b,因为AED面积等于ABCD的一半,则ABE加上DEC的面积也等于ABCD的一半。而FDC的面积也等于ABCD的一半,即23+a+32+12+b=a+b+阴影面积,可见阴影面积=23+32+12=67。5、右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是 平方厘米 【解】:四边形AFDC的面积=三角形AFD+三角形ADC=(FDAF)+(ACCD)=(FE+ED)AF+(AB+BC)CD= (FEAF+EDAF)+(ABCD+BCCD)。所以阴影面积=四边形AFDC-三角形AFE三角形BCD=(FEAF+EDAF)+(ABCD+BCCD)-FEAF-BCCD=EDAF+ABCD=87+312=28+18=46。练习题1、()如右图所示,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。解:作辅助线FB,则SBAF3SABC1/2SDAF;则有SABC1/6SDAF;作辅助线AE,则SACE2SABC1/4SCEF;则SABC1/8SCEF;作辅助线CD,则有:SCBDSABC1/3SCEF;综上,三角形DEF由这四个三角形构成,那么由已求出的比例关系可知,三角形DEF的面积为1+6+8+318。2、()右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?解:设定阴影部分面积为X,则不难由长方形面积公式看出比例关系为:X/30=15/18,则X=25。3、()如下图,已知D是BC的中点,E是CD的中点,F是AC的中点,且的面积比的面积大6平方厘米。解:因为。根据已知条件:。所以三角形DEF的面积为6。因此三角形ABC的面积为48平方厘米。4、()长方形ABCD的面积为36平方厘米,E、F、G分别为边AB、BC、CD的中点,H为AD边上的任一点。求图中阴影部分的面积是多少?【解答1】极限考虑,若H点动到D点,那么阴影面积为四边形BEFH,所以面积占总共的一半为18。【解答2】过H作HI垂直BC,这样四边形FCGH的面积就分成三角形FHI和梯形ICGH,所以空白部分的总面积为:(CG+HI)IC2+FIHI2+AEAH2=(CGIC+HIIC+FIHI+AEAH) (CG=AE)=CG(IC+AH)+HI(IC+FI) (HI=CD)=(CGBC+CDFC)= 四边形ABCD的面积=18.5、()如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。解:我们要得到阴影部分,只要两个正方形的面积和扣除三个三角形的面积即可。那么正方形面积和为:10101212244。三角形ABG面积为50;三角形ABD面积为1/22212132;三角形AFG面积为1/221212。则阴影部分面积为244501321250。 6、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少?【解答】:公共部分的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论