




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版实验教科书七年级下册1.1整式教学目标:1.在现实情景中进一步理解用字母表示数的意义,发展符号感。 2.了解整式产生的背景和整式的概念,能求出整式的次数。教学重点:整式的概念与整式的次数。教学难点:整式的次数。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪、常用的教学教具活动准备:1、分别求出下列图形的面积:三角形的面积为_; 长方形的面积为_正方形的面积为_;圆的面积为_. 2、代数式的系数、项的回顾:(1)代数式的系数是 代数式的系数是 (2)代数式的系数是 代数式的系数是 (3)代数式共有 项,它们的系数分别是 、 ,项是_.(4)代数式共有 项,它们的系数分别是 、 、 教学过程: 1 课前复习1的基础上求下列图形的面积:一个塑料三角尺如图所示,阴影部分所占的面积是_2 小红、小兰和小明的房间的窗户从左到右如下图所示,其上方的装饰(它们的半径相同)(1) 装饰物所占的面积分别是_ _ _(2) 窗户中能射进阳光的部分的面积分别是_ _a a a b b b二、单项式、多项式的概念与其次数 注意:(1)区分判别字母在分子中与字母在分母中的式子是否整式。(2)多项式是“几个单项式的和”中的和如何理解。(3)单独一个数或一个字母也是单项式,而单独一个非零的次数是0。(4)单独一个字母的次数是1。(5)常见错误多项式的次数就是把多项式的所有字母的指数相加。 与单项式的次数混淆。三、巩固练习:1、 计算:1在代数式,5,ab,中,其中单项式有_它们各自的系数分别为_多项式有_2单项式的次数: 字 母 字母的指数 指数和 次 数3x3、多项式的次数: 项数 项 各项次数 最高次数 多项式次数三、整式的名称: 根据单项式、多项式的次数与项数而命名。(其中数字一定要大写)例: 是二次二项式巩固练习:1、单项式、多项式的名称: 是_次_项式 是_次_项式 是_次_项式 小 结:(1)这节课,你学到了什么? (2)整式是指什么? (3)单项式、多项式的次数是怎样求的? (4)如何给单项式、多项式起个名字?作 业:课本P5习题1.1:1,2,3。教学后记:北师大版实验教科书七年级下册 1.2 整式的加减(1)教学目的:1、 经历及字母表示数量关系的过程,发展符号感。2、 会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。教学重点:会进行整式加减的运算,并能说明其中的算理。教学难点:正确地去括号、合并同类项,及符号的正确处理。教学方法:尝试法,讨论法,归纳法。教学用具:课件。活动准备:准备好一个数字游戏。教学过程:一、 课前练习:1、填空:整式包括 和 2、单项式的系数是 、次数是 3、多项式是 次 项式,其中二次项系数是 一次项是 ,常数项是 4、下列各式,是同类项的一组是( ) (A)与 (B)与 (C)与5、去括号后合并同类项:二、 探索练习: 1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为 这两个两位数的和为 2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为 这两个三位数的差为 议一议:在上面的两个问题中,分别涉及到了整式的什么运算? 说说你是如何运算的?整式的加减运算实质就是 运算的结果是一个多项式或单项式。三、 巩固练习:1、填空:(1)与的差是 (2)、单项式、的和为 (3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需( )个棋子,n个三角形需 个棋子2、计算:(1)(2) (3)3、(1)求与的和 (2)求与的差4、 先化简,再求值: 其中四、 提高练习:1、 若A是五次多项式,B是三次多项式,则A+B一定是(A) 五次整式 (B)八次多项式(C)三次多项式 (D)次数不能确定2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?3、一个两位数与把它的数字对调所成的数的和,一定能被11整除,请证明这个结论。4、如果关于字母x的二次多项式的值与x的取值无关,试求m、n的值。五、 小结:整式的加减运算实质就是去括号和合并同类项。六、 作业:第8页习题1、2、3北师大版实验教科书七年级下册1.2整式的加减(2)教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。 2.通过探索规律的问题,进一步体会符号表示的意义,发展符号感,发展推理能力。教学重点:整式加减的运算。教学难点:探索规律的猜想。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪活动准备:计算:(1)(x2x25)(34x26x)(2)求下列整式的值:(3a2ab7)(3a2ab9),其中a,b3教学过程:一、探索练习: 摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。 按照这样的方式继续摆下去。 (1)摆第10个这样的“小屋子”需要 枚棋子 (2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。二、例题讲解:三、巩固练习:1、计算:(1)(11x32x2)2(x3x2) (2)(3a22a6)3(a21)(3)x(12xx2)+(1x2) (4)(8xy3x2)5xy2(3xy2x2)2、已知:A=x3x21,B=x22,计算:(1)BA (2)A3B3、列方程解应用题:三角形三个内角的和等于180,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15,那么 (1)第一个角是多少度? (2)其他两个角各是多少度?四、提高练习:1、 已知Aa2b2c2,B4a22b23c2,并且ABC0,问C是什么样的多项式?2、设A2x23xyy2x2y,B4x26xy2y23xy,若x2a(y3)20,且B2Aa,求A的值。c0ba3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:aabcabc小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作 业:课本P11习题1.3:1(2)、(3)、(6),2。教学后记:同底数幂的乘法一、 学生起点分析学生的知识技能基础:学生通过对七年级上册数学课本的学习,已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生活动经验基础:在相关知识的学习过程中,学生完全可以借助于已知的幂的意义,通过个人思考、小组合作等方式,进行知识迁移,总结出新的知识。二、 教学任务分析本节课的设计,教科书从天文中的有趣的问题引入新课,学生要经历从实际情境中抽象出数学符号的过程,在探索中,学生将自然地体会同底数幂运算的必要性,有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力。在教学过程中,教师可进一步启发要求学生往更深一层次去研究、剖析知识,概括出“底数互为相反数”时的运算方法,培养学生知识的运用能力,加深了对所学知识的理解。本节课的具体教学目标为:1能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。2在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。3了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。三、 教学设计分析本节课设计了七个教学环节:复习回顾、探究新知、巩固落实、应用提高、拓展延伸、课堂小结、布置作业。第一环节复习回顾活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识: 活动目的:通过此活动,让学生回忆幂与乘方之间关系,即,即多个相同因数乘积的形式,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力。活动的注意事项:教师要引导学生回忆七年级上册课本中有关乘方的知识,能把幂的形式与同底数幂的乘法之间的联系通过回忆后彻底搞清楚、搞透彻,弄明白。在最初回忆时,或许学生会出现思维上的盲点,教师根据具体情况,可以从最基本的数学形式上进行引导,如,你是怎样知道的?等。而学生作为教学活动的主体,一定要积极进行思考,切不可仅听取他人意见。这个内容是探索新知识的主要依据,绝不能省略。第二环节探究新知活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。活动目的:在很多人的印象中,代数除了繁琐的计算就是空洞的符号,是一门内容枯燥、脱离实际的课程,事实上,代数是一门具有丰富内容并且与现实世界、学生生活、其他科学联系十分紧密的学科,它的符号表示手段,深刻地揭示了存在于一类实际问题中的共性,有助于人们对现实世界的认识。本节课的内容正是体现了这一点,用字母揭示一般规律性的东西,是我们应该引导学生掌握的,这是一种非常简洁的方式。活动的注意事项:探求新知的过程应留给学生独立思考,在教学时要尽量留给学生更多的时间与空间,让他们充分发挥个人的主体作用。用字母表达式体现一般的规律性,学生不是首次接触,如原来所学的各种几何图形面积公式就是一种体现。在本节课中,让学生从数字入手,首先研究可以写成怎样的乘积形式,呢?如若把指数换为字母,又可以怎样理解?在此基础上,把底数换为分数的形式,进而又换作字母的形式,由学生个人思考,小组合作得到结论,结论共享,使全班在认识上又有大的提高,从而得到一般的规律性结论表达式。由前面的层层铺垫得到结论并非难事,多数同学完全可以理解。字母表达式中“m、n都是正整数”这一限定条件不必过分严格强调,随着今后所学数的范围的扩大,这一条件不起作用。让学生能识别并记忆表达式特征是关键。第三环节巩固落实活动内容:以基本习题为落脚点,让学生学会判别、应用所学字母表达式,以达到巩固新知的作用。参照教材提供的例题,不断要求学生分辨,是否符合“同底数幂乘法”特征:是乘法运算吗?因式部分底数是多少?对于(3)题中“一”你是怎样理解的?这道题仍是“同底数幂乘法”的形式吗?你会处理(4)题中的指数问题吗?说一说你的处理方式。活动目的:教科书例题是落实基本知识的主要习题类型,特别是刚刚接触,还没有消化吸收的新知识,理解不透彻往往会为今后的学习带来麻烦,所以在处理例题时,可设计一连串的问题串,由浅入深地进行剖析、分解,这样的设计帮助学生以表达式为依据,根据表达式特征会对形式变化的习题进行分析,从而找到突破口,实践次数多了,学生自然提高对问题的分析、解决能力,使自己在不知不觉中进步。活动的注意事项:例题中后两个是难点,(3)题中或许会出现对“一”的不理解,无从下手,此时可与(1)题比较,负数作底数在形式上是加括号的,所以此时的“一”不存在于底数之中,因而底数为x,可以看作是同底数幂相乘,“一”在这里起到的是表示相反数的意义。第四环节应用提高活动内容:1完成课本“想一想”:等于什么?2通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。3独立处理例2,从实际情境中学会处理问题的方法。4处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。活动目的:进一步熟悉同底数幂的乘法性质,并运用同底数幂的乘法性质解决一些实际问题。活动注意事项:扎扎实实的落实了字母表达式,学生已对本节主要知识有了清醒的认识,此处应留给学生充分的空间进行思考交流。由于知识难度跨度不大,思维上不会造成过度混乱,因而不需花费过多时间。第五环节拓展延伸活动内容:写成幂的形式:1(1);(2);(3). 2(1);(2)活动目的:面对底数互为相反数时怎样把乘积结果写为幂的形式?这也是同底数幂乘法中会遇到的问题。因为有难度,已在北师大教材中删除,但如果学生整体水平比较好,教学中可以引导学生思考。活动的注意事项:对于底数互为相反数的这种形式,学生刚一接触可能思想跳跃性较大,有无从下手的感觉,而引导他们从幂的意义的角度去分析自然不难得到:“负数的偶次幂为正,负数的奇次幂为负”的结论。而对于这一结论的认识单凭引导得出,在学生脑海中的映象自然不清晰,应鼓励学生先去探索,分组合作,尽量在小组内合作消化掉。对于个别合作不佳的小组或数学抽象思维不强的同学,仍需教师进行指导,从而让学生体会到遇到这类问题应先确定结果符号,再进行指数相加。对于2题中两个小问题,要体现整体的思想,同时也是底数互为相反数的幂的乘积形式一类问题的知识升华,在此只对能力高的学生作要求。第六环节课堂小结活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。活动目的:学生畅谈自己学习所得的新知识与个人切身体会,教师予以鼓励,激发学生的学习兴趣与自信心,特别是课上这种由特殊到一般的知识推导方式,更是学数学应掌握的必要方法。活动的注意事项:发挥学生学习的主体地位,从他们已有的知识结构出发,通过观察、操作、归纳总结等活动,来探究新知,小结中更要体现这一点,教师只是起适时的点拨作用。第七环节布置作业1请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。2完成课本习题1.4中所有习题。四、教学设计反思:1.要把所学知识与未学知识有机的结合起来学生的知识体系是一步步建立起来的,怎样通过引导能让学生把已熟悉的知识与未学知识巧妙联系起来是在教学过程中必须深入思考的环节。在教学中的复习回顾不能仅仅限于上堂课中所学知识的蜻蜓点水式回忆,而应把有利于学生自主探究新知的已有知识作为复习的重点,从而为新课的学习做好准备。2.要把培养学生的能力放于学习的首位学习知识的过程不能简单的理解为“教学”的过程,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受数学的整体性,不断丰富解决问题的策略,提高解决问题的能力。3.可以把适当的拓展题补充到教学之中在教学上,可根据学生的学习水平将知识作适当的拓展,尤其是对一些学有余力的学生可为他们提供进一步发展的机会。北师大版实验教科书七年级上册1.4幂的乘方与积的乘方(1)教学目标:1、经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。 2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。教学重点:会进行幂的乘方的运算。教学难点:幂的乘方法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪、常用的教学用具活动准备:1、计算(1)(x+y)2(x+y)3 (2)x2x2x+x4x (3)(0.75a)3(a)4 (4)x3xn-1xn-2x4教学过程: 通过练习的方式,先让学生复习乘方的知识,并紧接着利用乘方的知识探索新课的内容。一、 探索练习:1、 64表示_个_相乘.(62)4表示_个_相乘.a3表示_个_相乘.(a2)3表示_个_相乘.在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。 2、(62)4=_ =_(根据anam=anm) =_ (33)5=_ =_(根据anam=anm) =_(a2)3=_ =_(根据anam=anm) =_(am)2=_ =_(根据anam=anm) =_(am)n=_ =_(根据anam=anm) =_即 (am)n= _(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数_,指数_.学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。 二、 巩固练习:1、 1、计算下列各题:(1)(103)3 (2)()34 (3)(6)34(4)(x2)5 (5)(a2)7 (6)(as)3(7)(x3)4x2 (8)2(x2)n(xn)2 (9)(x2)37 学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。2、 判断题,错误的予以改正。(1)a5+a5=2a10 ( )(2)(s3)3=x6 ( )(3)(3)2(3)4=(3)6=36 ( )(4)x3+y3=(x+y)3 ( ) (5)(mn)34(mn)26=0 ( ) 学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用.三、 提高练习:1、 1、计算 5(P3)4(P2)3+2(P)24(P5)2(1)m2n+1m-1+02002(1)19902、 若(x2)n=x8,则m=_.3、 、若(x3)m2=x12,则m=_。4、 若xmx2m=2,求x9m的值。5、 若a2n=3,求(a3n)4的值。 6、已知am=2,an=3,求a2m+3n的值.小 结:会进行幂的乘方的运算。作 业:课本P16习题1.7:1、2、3。教学后记:北师大版实验教科书七年级下册 1.4 积的乘方教学目的:1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。2、了解积的乘方的运算性质,并能解决一些实际问题。教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。教学方法:探索、猜想、实践法教学用具:课件教学过程:一、课前练习:1、计算下列各式:(1) (2) (3)(4)(5)(6)(7) (8) (9)(10) (11)2、下列各式正确的是( )(A) (B) (C)(D)二、探索练习:1、 计算:2、 计算:3、 计算:从上面的计算中,你发现了什么规律?_ 4、猜一猜填空:(1) (2)(3) 你能推出它的结果吗?结论:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。三、巩固练习:1、 计算下列各题:(1) (2)(3)(4)2、 计算下列各题:(1) (2) (3) (4) (5) (6)3、 计算下列各题:(1) (2) (3)(4) (5) (6)(7) (8)四、提高练习:1、计算: 2、已知, 求的值3、已知 求的值。 4、已知,试比较a、b、c的大小4、 太阳可以近似地看做是球体,如果用V、r分别表示球的体积和半径,那么,太阳的半径约为千米,它的体积大约是多少立方米?(保留到整数)五、小结:本节课学习了积的乘方的性质及应用,要注意它与幂的乘方的区别。六、作业:第18页习题 1、2、3、4、北师大版实验教科书七年级下册1.5同底数幂的除法教学目标:1、经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。 2、了解同底数幂的除法的运算性质,并能解决一些实际问题。教学重点:会进行同底数幂的除法运算。教学难点:同底数幂的除法法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪活动准备:1、填空:(1) (2)2 (3) 2、计算: (1) (2)教学过程:四、 探索练习:(1)(1)(3)(4)从上面的练习中你发现了什么规律? 猜一猜:五、 巩固练习:1、填空: (1) (2)(3) (4) (5)2、计算:(1) (2) (3)(4) (5)3、用小数或分数表示下列各数:(1) (2) (3) (4) (5)4.2 (6)六、 提高练习:1、已知2、若3、(1)若 (2)若(3)若0.000 000 33,则 (4)若小 结:会进行同底数幂的除法运算。作 业:课本P21习题1.7:1、2、3、4。教学后记:北师大版实验教科书七年级下册1.6 单项式的乘法 教学目标1使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;2注意培养学生归纳、概括能力,以及运算能力教学重点和难点准确、迅速地进行单项式的乘法运算课堂教学过程设计一、从学生原有认知结构提出问题1下列单项式各是几次单项式?它们的系数各是什么?2下列代数式中,哪些是单项式?哪些不是?3利用乘法的交换律、结合律计算6413254前面学习了哪三种幂的运算性质?内容是什么?二、讲授新课1引导学生得出单项式的乘法法则利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1) 2x2y3xy2=(23)(x2x)(yy2)=6x3y3;(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)(2) 4a2x5(-3a3bx)=4(-3)(a2a3)b(x5x)=-12a5bx6(b只在一个单项式中出现,这个字母及其指数照抄)学生练习,教师巡视,然后由学生总结出单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式2引导学生剖析法则(1)法则实际分为三点:系数相乘有理数的乘法;相同字母相乘同底数幂的乘法;只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式(2)不论几个单项式相乘,都可以用这个法则(3)单项式相乘的结果仍是单项式三、应用举例 变式练习例1 计算:(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);(4)(-3ab)(-a2c)26ab(c2)3解:(1)(-5a2b3)(-3a)=(-5)(-3)(a2a)b3=15a3b3;(2) (2x)3(-5x2y)8x3(-5x2y)8(-5)(x3x2)y-40x5y;(4) (-3ab)(-a2c)26ab(c2)3(-3ab)a4c26abc6(-3)6a6b2c8-18a6b2c8第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演,根据学生板演情况,教师提醒学生注意:先做乘方,再做单项式相乘,中间过程要详细写出,待熟练后才可省略课堂练习1计算:(1)3x55x3;(2)4y(-2xy3);2计算:(1)(3x2y)3(-4xy2);(2)(-xy2z3)4(-x2y)33计算:(1)(-6an+2)3anb;(4)6abn(-5an+1b2)例2 光的速度每秒约为3105千米,太阳光射到地球上需要的时间约是5102秒,地球与太阳的距离约是多少千米?解:(3105)(5102)=15107=1.5108答:地球与太阳的距离约是1.5108千米先由学生讨论解题的方法,然后由教师根据学生的回答板书课堂练习一种电子计算机每秒可作108次运算,它工作5102秒可作多少次运算?四、小结1单项式的乘法法则可分为三点,在解题中要灵活应用2在运算中要注意运算顺序教后记:在教学中,除了在难点与关键处给以适度的启示与点拨之外,尽量引导学生去独立探索和思考凡学生力所能及之处,教师一概不包办代替,在课堂内最大限度地给学生创造思维自由驰骋的时间和空间问题由教师提出,而结论则由学生通过一定的智力活动后而获得北师大版实验教科书七年级上册1.6整式的乘法(2)教学目标:1.经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算.。 2.理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。教学重点:整式的乘法运算。教学难点:推测整式乘法的运算法则。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪活动准备:计算:(1) (1) (2) (3) 2(ab3)(4)3(ab2c+2bcc) (5)(2a3b)(6ab6c) (6) (2xy2)3yx教学过程:一、探索练习: 课件展示图画,让学生观察图画用不同的形式表示图画的面积.并做比较.由此得到单项式与多项式的乘法法则。 第一表示法:x2 x第二表示法:x(x)故有:x(x)= x2观察式子左右两边的特点,找出单项式与多项式的乘法法则。跟着用乘法分配律来验证。单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。二、例题讲解: 例2:计算(1)2ab(5ab2+3a2b) (2) 三、巩固练习:1、判断题:(1) 3a35a3=15a3 ( ) (2) ( )(3) ( ) (3) x2(2y2xy)=2xy2x3y ( )2、计算题:(1) (2) (3) (4) 3x(yxyz)(5) 3x2(yxy2x2) (6) 2ab(a2bc)(7) (a+b2+c3)(2a) (8) (a2)3+(ab)2+3(ab3)(9) (10) (11) ( 四、应用题: 1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?五、提高题:1 计算:(1)(x3)22x3x3x(2x21) (2)xn(2xn+23xn-1+1) 2、已知有理数a、b、c满足 |ab3|+(b+1)2+|c1|=0,求(3ab)(a2c6b2c)的值。3、已知:2x(xn+2)=2xn+14,求x的值。4、若a3(3an2am+4ak)=3a92a6+4a4,求3k2(n3mk+2km2)的值。小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作 业:课本P11习题1.3教学后记:单项式与多项式相乘,学生对乘法的分配律掌握得不好,出现漏乘,并且出现弄错符号的现象,有一部分学生乘法,还有对合并同类项和同底数幂相混淆的情况,或把加法看作是同底数幂来进行计算。北师大版实验教科书七年级下册1.6 整式的乘法(3)多项式乘以多项式 教学目标:1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。 2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。教学重点:多项式乘法的运算。教学难点:探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题教学方法:探索法、讨论法,归纳法。教学用具:投影仪活动准备:预先剪好几张长方形卡片。 教学过程:一、 课前练习:1、 计算:(1)(2)(3) (4)(5) (6)(7) (8)2、计算:(1) (2)二、 探索练习: 如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘, 三、 巩固练习:1、计算下列各题:(1) (2) (3)(4) (5) (6)(7) (8) (9)(10) (11)四、 提高练习:1、若 则m=_ , n=_2、若 ,则k的值为( ) (A) a+b (B) ab (C)ab (D)ba3、已知 则a=_ b=_4、若成立,则X为 5、计算: +26、某零件如图示,求图中阴影部分的面积S7、在与的积中不含与项,求P、q的值五、 小结:本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。六、作业:第28页习题 1、2北师大版实验教科书七年级下册1.7平方差公式(1)(P29P30)教学目标:1、经历探索平方差公式的过程,进一步发展学生的符号感和推理能力;2、会推导平方差公式,并能运用公式进行简单的计算;3、了解平方差公式的几何背景。教学重点:1、弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点; 2、会用平方差公式进行运算。教学难点:会用平方差公式进行运算教学方法:探索讨论、归纳总结。教学工具:投影仪准备活动:计算: 1、 2、 3、 教学过程:一、 探索练习:1、计算下列各式: (1) (2) (3)2、观察以上算式及其运算结果,你发现了什么规律? 3、猜一猜: 二、 巩固练习:1、下列各式中哪些可以运用平方差公式计算 (1) (2) (3) (4)2、判断:(1) ( ) (2) ( ) (3) ( )(4) ( ) (5) ( ) (6) ( )3、计算下列各式:(1) (2) (3)(4) (5)(6) 4、填空:(1) (2)(3) (4)三、 提高练习:1、求的值,其中 2、计算:(1)(2)3、若小 结:熟记平方差公式,会用平方差公式进行运算。作 业: 课本P30习题1.11:1。教学后记: 北师大版实验教科书七年级下册1.7 平方差公式(二) 教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异教学重点和难点公式的应用及推广教学过程一、复习提问1(1)用较简单的代数式表示下图纸片的面积(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HDBCGDFEa-b,这样裁开后才能重新拼成一个矩形希望推出公式:2(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异说明:平方差公式的数学表达式在使用上有三个优点(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括因而也就“欠”明确(如结果不知是谁与谁的平方差)故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活3判断正误:(1)(4x+3b)(4x-3b)4x2-3b2;() (2)(4x+3b)(4x-3b)16x2-9;()(3)(4x+3b)(4x-3b)4x2+9b2;() (4)(4x+3b)(4x-3b)4x2-9b2;()二、新课例1 运用平方差公式计算:(1)10298; (2)(y+2)(y-2)(y2+4)解:(1)10298 (2)(y+2)(y-2)(y2+4)(100+2)(100-2) (y2-4)(y2+4)1002-2210000-4 (y2)2-42y4-16 9996;2运用平方差公式计算:(1)10397;(2)(x+3)(x-3)(x2+9);(3)59.860.2;3请每位同学自编两道能运用平方差公式计算的题目例2 填空:(1)a2-4(a+2)( );(2)25-x2(5-x)( );(3)m2-n2( )( );思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1x2-25( )( );24m2-49(2m-7)( );3a4-m4(a2+m2)( )(a2+m2)( )( );例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7)解:(1)(a+b-3)(a+b+3) (2)(m2+n-7)(m2-n-7)(a+b)-3(a+b)+3 (m2-7)+n(m2-7)-n(a+b)2-9a2+2ab+b2-9 (m2-7)2-n2 m4-14m2+49-n2三、小结1什么是平方差公式?一般两个二项式相乘的积应是几项式?2平方差公式中字母a、b可以是那些形式?3怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2)2运用平方差公式计算:(1)6971; (2)5347;教后记:在用几何的方法对平方差公式进行解释的时候,学生难以理解。在用平方差公式进行计算的时候学生对于a,b的找法仍然不熟练,在什么情况下应用这个公式不了解,导致不能用平方差公式进行计算的也用它进行计算。北师大版实验教科书七年级下册1.8完全平方公式(1)教学目标:1、经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;2、会推导完全平方公式,并能运用公式进行简单的计算;3、了解完全平方公式的几何背景。教学重点:1、弄清完全平方公式的来源及其结构
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年庆铃集团招聘考试真题
- 2025年教师美术考试试题及答案
- 2025年保安员考试必刷题库及完整答案一套
- 技术入股如何合作协议
- 2025年镇江中考数学试卷及答案
- 2025年绿色建筑技术师执业资格考试试题及答案
- 2025年消防安全应急处置员消防安全应急预案试题(附答案)
- 2025年科技创新与管理实践能力考试试题及答案
- 2025年霍乱培训试题及答案
- 2025年河北省秦皇岛市电工证考试题模拟试题初级电工试题(附答案)
- 造口并发症护理
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 箱式变电站技术规范应答
- 加油站物业承包协议模板
- 汽修维修外包合同范本
- 2024工勤人员考试公共课程考试题库及参考答案
- 集成电路制造工艺原理集成电路制造工艺原理模板
- 质量教育培训计划方案
- 产品追溯及模拟召回演练计划
- 访学归来讲座课件
- Stata统计分析与应用(第3版)
评论
0/150
提交评论