一元二次方程教案.docx_第1页
一元二次方程教案.docx_第2页
一元二次方程教案.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

211一元二次方程教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根学情分析学生升入初三后,两级分化特别明显,优生无论在课堂还有是课后都主动学习,积极性高;后进生处于放弃学习的状态。想要转变比较困难,但可以从学习态度上入手,提高教学质量,可将问题简单化,讲解更深入更透彻,学生在七年级时已经学习了一元一次方程的概念,用类比的方法得出一元二次方程学习比较容易接受。教学重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2bxc0(a0)和一元二次方程的解等概念,并能用这些概念解决简单问题教学难点一元二次方程及其二次项系数、一次项系数和常数项的识别教学过程一、创设情境,导入新知 1有一块矩形铁皮,长 100 cm,宽 50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方形? 2要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排 7 天,每天安排 4 场比赛,比赛组织者应邀请多少个队参加比赛? 二、细心观察,归纳定义 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念1一元二次方程:只含有_个未知数,并且未知数的最高次数是_,这样的_方程,叫做一元二次方程三、细心观察,概念辨析 辨别下列各式是否为一元二次方程?4x 2 = 812 x 2 - 1 = 3y 3x x - 1 = 5 x + 2 2x 2 + 3x - 1 关于 x 的方程 mx 2 - 3x + 2 = 0 (m0)2一元二次方程的一般形式是ax2bxc0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a0,b,c可以为0吗?(3)2x2x10的一次项系数是1吗?为什么?3一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根)四、动脑思考,例题解析 例:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出二次项系数、一次项系数及常数项五、动脑思考,巩固训练 1将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)5x 2 -1= 4x;(2)4x 2 = 81; (3)4x ( x + 2 ) =25;(4) (3x 2)( x + 1) = 8x - 3 2根据下列问题,列出关于 x 的方程,并将所列方程化成一元二次方程的一般形式(1)4 个完全相同的正方形的面积之和是 25,求正方形的边长 x;(2)一个矩形的长比宽多 2,面积是 100,求矩形的长 x;(3)把长为 1 的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长 x 3下列哪些数是方程的根?从中你能体会根的作用吗? 4,3,2,1,0,1,2,3,4 六、归纳小结 , 布置作业 我们学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论