导数第五课时:数列极限的运算法则+无穷等比数列和.doc_第1页
导数第五课时:数列极限的运算法则+无穷等比数列和.doc_第2页
导数第五课时:数列极限的运算法则+无穷等比数列和.doc_第3页
导数第五课时:数列极限的运算法则+无穷等比数列和.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列极限的运算法则一、复习引入:函数极限的运算法则:如果则,(B)数列极限的运算法则与函数极限的运算法则类似:如果那么推广:上面法则可以推广到有限多个数列的情况。例如,若,有极限,则:特别地,如果C是常数,那么例1.已知,求例2.求下列极限:(1);(2)(3) (4)例4.求下列极限:(1) (2)1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。 当无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。2.有限个数列的和(积)的极限等于这些数列的极限的和(积)。3.两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的极限不一定不存在。小结:在数列的极限都是存在的前提下,才能运用数列极限的运算法则进行计算;数列极限的运算法则是对有限的数列是成立的。练习与作业:1.已知,求下列极限(1);(2)无穷等比数列各项的和1、等比数列的前n项和公式是_无穷等比数列各项的和:公比的绝对值小于1的无穷等比数列前n项的和当n无限增大时的极限,叫做这个无穷等比数列各项的和. 设无穷等比数列的公比的绝对值小于1,则其各项的和S为 1、求无穷等比数列 0.3, 0.03, 0.003,各项的和. 1、求下列无穷等比数列各项的和:(1) (2)(3) (4)3、如图,等边三角形ABC的面积等于1,连结这个三角形各边的中点得到一个小三角形,又连结这个小三角形各边的中点得到一个更小的三角形,如此无限继续下去,求所有这些三角形的面积的和.4、如图,三角形的一条底边是a ,这条边上的高是h(1)过高的5等分点分别作底边的平行线,并作出相应的4个矩形,求这些矩形面积的和(2)把高n等分,同样作出n1个矩形,求这些矩形面积的和;(3)求证:当n无限增大时,这些矩形面积的和的极限等于三角形的面积ah/2.求下列极限:(1);(2)。(1);(2);(3);(4)。(1). (2). (3). (4).(5). (6).(9) (10).已知求例1正方形ABCD的边长为1,连接这个正方形各边的中点得到一个小的正方形;又连接这个小正方形各边的中点得到一个更小的正方形;如此无限继续下去,求所有这些正方形的面积的和.2.如图,在直角三角形中在内作一系列的正方形,求所有这些正方形面积的和。3.若是一块半径为1的半圆形纸板,在的左下端剪去一个半径为的半圆后得到图形,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)的图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论