



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(一)教学目标1知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。3情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判断解的个数。(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。教学用具:直尺、投影仪、计算器(四)教学设想创设情景 新课 标 第 一 网如图11-1,固定ABC的边CB及B,使边AC绕着顶点C转动。 A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来? C B探索研究 (图11-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图11-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, A则 b c从而在直角三角形ABC中, C a B(图11-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图11-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B (图11-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二):过点A作, C由向量的加法可得 则 A B ,即同理,过点C作,可得 从而 X k B 1 . c o m类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,;(2)等价于,从而知正弦定理的基本作用为:已知三角形的任意两角及其一边可以求其他边,如;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。例题分析例1在中,已知,cm,解三角形。解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,评述:对于解三角形中的复杂运算可使用计算器。例2在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解:根据正弦定理,因为,所以,或 当时, , 当时, ,评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。随堂练习第5页练习第1(1)、2(1)题。新-课 -标-第 -一 -网例3已知ABC中,A,,求分析:可通过设一参数k(k0)使,证明出解:设则有,从而=又,所以=2评述:在ABC中,等式恒成立。补充练习已知ABC中,求(答案:1:2:3)课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中小学美术教师基本功比赛试题及答案
- 药用植物学考试练习题及答案3
- 九年级道德与法治下册 第一单元 我们共同的世界 第二课 构建人类命运共同体说课稿设计(pdf) 新人教版
- 公务员面试题库及答案
- 高速测速设备采购合同模板(3篇)
- 高粮收割合同模板(3篇)
- 高空装修合同模板(3篇)
- 电力线宽带接入项目进度管理与监督合同
- 2025恒丰银行笔试题及答案
- 娱乐产业公司股份收购与内容制作协议
- GB/T 20716.2-2025道路车辆牵引车和挂车之间的电连接器(7芯)第2部分:12 V标称电压车辆的制动系统和行走系的连接
- (新教材)2025年秋期人教版一年级上册数学全册核心素养教案(教学反思无内容+二次备课版)
- 2025广西公需科目真题续集(附答案)
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- 质量风险和机会识别、评价及控制措施表
- 幼儿园大班科学教案《神奇的小麦》【幼儿教案】
- 2022年医疗卫生系统事业编制(护理学专业)考试题库及答案
- FZ/T 62033-2016超细纤维毛巾
- 设计思维教案
- 储罐施工方案(电动葫芦)
- 《概率论与数理统计》-教学教案
评论
0/150
提交评论