数学人教版九年级上册二次函数图像与性质及其综合应用教学设计.doc_第1页
数学人教版九年级上册二次函数图像与性质及其综合应用教学设计.doc_第2页
数学人教版九年级上册二次函数图像与性质及其综合应用教学设计.doc_第3页
数学人教版九年级上册二次函数图像与性质及其综合应用教学设计.doc_第4页
数学人教版九年级上册二次函数图像与性质及其综合应用教学设计.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数图像与性质及其综合应用教学设计课 题二次函数图像与性质及其综合应用授课时间2020年3月25日备课时间2017年4月10日教 学目 标1、会确定图象的顶点、开口方向和对称轴;2、理解二次函数在解决某些实际问题时的意义。3、掌握结合具体情境用函数思想来思考分析实际问题,二次函数在解决某些实际问题中的综合运用。重、难、考 点重难点:二次函数的实际应用及综合大题教学过程一、二次函数的定义和性质1二次函数如果yax2bxc(a,b,c为常数,a0),那么y叫做x的二次函数几种特殊的二次函数:yax2(a0);yax2c(ac0);yax2bx(ab0);ya(xh)2(a0)2二次函数的性质二次函数yax2bxc的性质对应在它的图象上,有如下性质:(1)抛物线yax2bxc的顶点是,对称轴是直线,顶点必在对称轴上;(2)若a0,抛物线yax2bxc的开口向上,因此,对于抛物线上的任意一点(x,y),当x时,y随x的增大而减小;当x时,y随x的增大而增大;当x,y有最小值;若a0,抛物线yax2bxc的开口向下,因此,对于抛物线上的任意一点(x,y),当x,y随x的增大而增大;当时,y随x的增大而减小;当x时,y有最大值;3抛物线的平移来源:w抛物线ya(xh)2k与yax2形状相同,位置不同把抛物线yax2向上(下)、向左(右)平移,可以得到抛物线ya(xh)2k平移的方向、距离要根据h、k的值来决定4.二次函数关系式的确定设一般式:yax2bxc(a0)若已知条件是图象上三个点的坐标,则设一般式yax2bxc(a0),将已知条件代入,求出a,b,c的值设交点式:ya(xx1)(xx2)(a0)若已知二次函数图象与x轴的两个交点的坐标,则设交点式:ya(xx1)(xx2)(a0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式设顶点式:ya(xh)2k(a0)若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:ya(xh)2k(a0),将已知条件代入,求出待定系数化为一般式1.(2013年浙江金华、丽水3分)若二次函数的图象经过点P(2,4),则该图象必经过点( )A(2,4) B(2,4) C(4,2) D(4,2)2.(2013年山东泰安3分)对于抛物线,下列结论:抛物线的开口向下;对称轴为直线x=1;顶点坐标为(1,3);x1时,y随x的增大而减小,其中正确结论的个数为( )A1 B2 C3 D43.(2013年江苏镇江3分)二次函数y=x24x+5的最小值是( ) A1 B1 C3 D5题型一 二次函数的定义例1(2013年湖南怀化3分)下列函数是二次函数的是( ) A B C D题型二 二次函数的图象及性质例2(2013四川广安,10,3分)若二次函数当l时,随的增大而减小,则的取值范围是( ) A=l Bl Cl Dl变式训练(2013年贵州贵阳4分)已知二次函数y=x2+2mx+2,当x2时,y的值随x值的增大而增大,则实数m的取值范围是 (2013湖北鄂州)已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D3(2013湖北襄阳,12,3分)已知函数的图象与x轴有交点,则k的取值范围是A.B.C.且D.且题型三 二次函数图象与系数a,b,c的关系例3(2013年内蒙古包头3分)已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:b0;4a+2b+c0;ab+c0;(a+c)2b2其中正确的结论是( )A B C D 变式练习(2013年贵州黔西南4分)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b24ac0;(2)c1;(3)2ab0;(4)a+b+c0,其中错误的有( )A1个 B2个 C3个 D4个(2010湖北孝感,12,3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:ac0;a+b=0;4acb2=4a;a+b+c0.其中正确的个数是( )A. 1 B. 2 C. 3 D. 4(2013山东日照,17,4分)如图,是二次函数 yax2bxc(a0)的图象的一部分, 给出下列命题 :a+b+c=0;b2a;ax2+bx+c=0的两根分别为-3和1;a-2b+c0其中正确的命题是 (只要求填写正确命题的序号)题型四 二次函数图象的平移例5(2013年贵州毕节3分)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A B C D题型五 二次函数与不等式的关系例6 抛物线y=ax2+bx+c(a0)如图所示,则关于x的不等式ax2+bx+c0的解集是( )Ax2 Bx3 C3x1 Dx3或x1 变式练习:二次函数yx22x3的图象如图所示当y0时,自变量x的取值范围是_题型六:二次函数实际应用考点一:求利润最大问题例1:(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx在x=1时,y=1.4;当x=3时,y=3.6信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点二:利用二次函数解决抛物线形建筑问题例2:(2012乌鲁木齐)如图是一个抛物线形拱桥的示意图,桥的跨度AB为100米,支撑桥的是一些等距的立柱,相邻立柱的水平距离为10米(不考虑立柱的粗细),其中距A点10米处的立柱FE的高度为3.6米.(1)求正中间的立柱OC的高度;(2)是否存在一根立柱,其高度恰好是OC的一半?请说明理由.考点三:利用二次函数求跳水、投篮等实际问题例3:(2000河北)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3.6米,问此次跳水会不会失误?题型七:综合压轴题1. 已知,抛物线经过A(-1,0),C(2,)两点,与x轴交于另一点B(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且MPQ=45,设线段OP=x,MQ=,求y2与x的函数关系式,并直接写出自变量x的取值范围2. 已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A),如图1,当PBC的面积与ABC的面积相等时,求点P的坐标;如图2,当PCB =BCA时,求直线CP的解析式图1 图23、如图,抛物线y=ax22ax+c(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由4、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值5.(2013年河南省4分)在二次函数的图像中,若随的增大而增大,则的取值范围是( )(A) (B) (C) (D)6.(2013年上海市4分)如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是( )(A) (B) (C) (D) 7.( 2013年广西河池3分)已知二次函数,当自变量x取m对应的函数值大于0,设自变量分别取m3,m3 时对应的函数值为y1,y2,则( )Ay10,y20 By10,y20 Cy10,y20 Dy10,y208.(2013年湖南株洲3分)二次函数的图象如图所示,则m的值是( ) A8 B8 C8 D6 9. 抛物线y=ax2+bx+c(a0)经过点(1,2)和(1,6)两点,则a+c= 10. 若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 11.(2013年四川广安3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1下列结论:abc0,2a+b=O,b24ac0,4a+2b+c0其中正确的是( )A B只有 C D12.(2013年辽宁大连3分)如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限)抛物线的顶点C在直线OB上,对称轴与x轴相交于点D平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为 基础练习题1. (2013潜江)2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图)若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为 米 2.(2013衢州)某果园有100棵橘子树,平均每一棵树结600个橘子。根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子。设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多。3(2012济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 秒4.(2013兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为5(2011北京)如图在RtABC中,ACB=90,BAC=30,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A、 B、 C、 D、 6、二次函数的图象如图,若一元二次方程有实数根,则m的最大值为( )A.-3 B.3 C.-5 D.9 拓展提高题1.(2013连云港)我市某海域内有一艘轮船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回如图折线段OAB表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律已知救援船返程速度是前往速度的根据图象提供的信息,解答下列问题:(1)救援船行驶了 海里与故障船会合;(2)求该救援船的前往速度;(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全。2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD(1)求抛物线的解析式;(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;(3)点P从点D出发,以每秒1个单位长度的速度沿DB匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BAD匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值3. (2013乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)30来源:405060销售量y(万个)5432同时,销售过程中的其他开支(不含造价)总计40万元(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论