向量数量积(经典难题)参考答案.doc_第1页
向量数量积(经典难题)参考答案.doc_第2页
向量数量积(经典难题)参考答案.doc_第3页
向量数量积(经典难题)参考答案.doc_第4页
向量数量积(经典难题)参考答案.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.在边长为1的正三角形ABC中,设,_2.如图在中,,则_3.如图,O、A、B是平面上三点,向量,在平面AOB上,P是线段AB的垂直平分线上任意向量,且,则= 4.如图,在矩形中,点为的中点,点在边上,若,则的值是 5.设P为线段AB的垂直平分线上任意一点,若平面PAB内一点O满足,_-6_6.在中,OA=2,OB=3,若,AD与BC交与M,则_7.已知半径为2的圆O与长度为3的线段PQ相切,若切点恰好为PQ的一个三等分点,则 2 8.圆O半径为2,A是圆O上一定点,BC是圆O上动弦,且弦长等于3,则= 12 9.在边长为1的正三角形ABC中,则 O为的外心,AB=4,AC=2, 为钝角,M是边BC的中点,则_5_10.内接于以O为圆心,1为半径的圆,且,则11.在中,AC=2,BC=6,已知点O是内一点,且满足,则12.外接圆的半径为1,圆心为O,且,则=_3_13.设点O是的重心,D是BC的中点,则_4_14. 已知向量满足:,且,则与的夹角大小是_15. 对任意两个非零的平面向量,定义,若平面向量满足,的夹角,且和都在集合中,则=_16.设,若,则的最大值为_2_ DCBA17.如图,线段AB的长度为2,点A,B分别在x非负半轴和y非负半轴上滑动,以线段AB为一边,在第一象限内作矩形ABCD,BC=1,O为坐标原点,则的取值范围是_18.如图,扇形的弧的中点为M,动点C,D分别在线段OA,OB上,且OC=BD.若OA=1, ,则的取值范围是_ 19.在平行四边形ABCD中,,边AB,AD的长分别为2,1,若M,N分别是BC,CD上的点,且满足,则的取值范围是_20.线段AB的长度为2,点A,B分别在x非负半轴和y非负半轴上滑动,以线段AB为一边,在第一象限内作矩形ABCD,BC=1,O为坐标原点,则的取值范围是_21.如图,在中,点P是线段OB及AB,AO的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是 _22.在平行四边形中,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是 。23.设,点是线段上的一个动点,若,则实数的取值范围是(A) (B) (C) (D) 24.已知是定义在R上的单调函数,实数, ,若,则( )A B C D25.若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( ) A. B. C. D. 26.设点P是内一点(不包括边界),且,则的取值范围是_27.若,均为单位向量,且,则的最大值为( )(A) (B)1 (C) (D)228.已知向量满足,则的取值范围是29.若点O和点F分别为椭圆的中心和右焦点,点P为椭圆上的任意一点,则的最大值为 30.在中,点D在线段BC的延长线上,且,点O在线段CD上(不与点C,D重合).若,则的取值范围是 31.已知的三边长,P为AB边上任意一点,则的最大值 9 32.已知均为单位向量,且,则的取值范围是 33.已知,点C在线段AB上,且的最小值为1,则的最小值为 34.已知点P是圆上的一个动点,点Q是直线:上的一个动点,O为坐标原点,则向量在向量上投影的最大值是 35.已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(A) (B) (C) (D)36.在平面直角坐标系中,点.对于某个正实数,存在函数,使得(为常数),其中的坐标分别为,则的取值范围为 37. 已知点G是的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值38. 已知点G是的重点,点P是内一点,若,则的取值范围是_39.已知向量,则面积的最小值是_40.已知平面向量满足且的夹角为,则的取值范围是_41. 已知向量满足,则的最小值为_42.设点A在圆内,点,O为坐标原点,若集合,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论