




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
梯形常用辅助线进阶练习一选择题1在梯形ABCD中,ADBC,AD=1,BC=3,AB=1.5,则CD的长可能是()A0.5 B2 C4 D62如图,在梯形ABCD中,ADBC,E、F分别是AB、CD的中点,则下列结论:EFAD;SABO=SDCO;OGH是等腰三角形;BG=DG;EG=HF其中正确的个数是()A1个 B2个 C3个 D4个二填空题3如图,等腰梯形ABCD的周长为18,腰AD=4,则等腰梯形ABCD的中位线EF=4梯形ABCD,ADBC,BD为对角线,E、F分别是AB、CD的中点,EF交BD于O,若FOEO=3,则BCAD=三解答题5如图,梯形ABCD中,ADBC,B=90,AD=18,BC=21点P从A出发沿AD以每秒1个单位的速度向点D匀速移动,点Q从点C沿CB以每秒2个单位的速度向点B匀速移动点P、Q同时出发,其中一个点到终点时两点停止运动,设移动的时间为t秒,求:(1)当AB=10时,设A、B、Q、P四点构成的图形的面积为S,求出S关于t的函数关系式,并写出定义域;(2)设E、F为AB、CD中点,求四边形PEQF是平行四边形时t的值参考答案1B2D35465解:(1)由题得,AP=t,CQ=2t,BQ=212t,AB=10,B=90A、B、Q、P四点构成的图形的面积=(AP+BQ)ABS=(t+212t)10=1055t181=18,212=10.5定义域为:0t10.5(2)过点D作DHBC于H,过点F作FGBC与G,则DHFG,四边形ABHD是矩形F是CD的中点G是CH的中点,FG=DHB=90,AD=18,BC=21CH=2118=3,CG=CH=QG=QCGC=2t当四边形EPFQ是平行四边形时,PE=QF又AE=FG=AB,A=FGQAEPGFQ(HL)QG=AP即2t=t解得t=故四边形PEQF是平行四边形时,t的值为解析1.【分析】本题考查了梯形、平行四边形的性质和判定、三角形的三边关系定理等知识点,关键是能通过作辅助线把已知量和未知量放在一个三角形中过D作DEAB交BC于E,得出四边形ABED是平行四边形,求出AD=BE=1,AB=DE=1.5,求出CE=2,在DEC中,由三角形的三边关系定理得出0.5DC3.5,再进行判断即可【解答】解:如图所示:过D作DEAB交BC于E,ADBC,四边形ABED是平行四边形,AD=BE=1,AB=DE=1.5,CE=31=2,在DEC中,由三角形的三边关系定理得:21.5DC2+1.5,即0.5DC3.5,A、0.5不在0.5DC3.5内,故本选项错误;B、2在0.5DC3.5内,故本选项正确;C、4不在0.5DC3.5内,故本选项错误;D、6不在0.5DC3.5内,故本选项错误;故选B2【分析】本题考查了等腰梯形性质,梯形的中位线,平行线分线段成比例定理,三角形的中位线等知识点的应用,主要考查学生的推理能力和辨析能力,题型较好,但是一道比较容易出错的题目根据梯形的中位线推出,求出ABD和ACD的面积,都减去AOD的面积,即可判断;只有等腰梯形ABCD,才能得出OBC=OCB,再根据平行线性质即可判断;根据平行线分线段定理即可得出G、H分别为BD和AC中点,即可判断;根据三角形的中位线得出EH=FG,即可得出EG=FH,即可判断【解答】解:在梯形ABCD中,ADBC,E、F分别是AB、CD的中点,EFADBC,正确;在梯形ABCD中,设梯形ABCD的高是h,则ABD的面积是ADh,ACD的面积是:ADh,SABD=SACD,SABDSAOD=SACDSAOD,即SABO=SDCO,正确;EFBC,OGH=OBC,OHG=OCB,已知四边形ABCD是梯形,不一定是等腰梯形,即OBC和OCB不一定相等,即OGH和OHG不一定相等,GOH和OGH或OHG也不能证出相等,说OGH是等腰三角形不对,错误;EFBC,AE=BE(E为AB中点),BG=DG,正确;EFBC,AE=BE(E为AB中点),AH=CH,E、F分别为AB、CD的中点,EH=BC,FG=BC,EH=FG,EG=FH,EHGH=FGGH,EG=HF,正确;正确的个数是4个,故选D3【分析】本题考查的是梯形中位线的性质,比较简单,属一般题目首先根据等腰梯形的腰长和周长求得其两底和,再根据梯形的中位线定理求得其中位线的长【解答】解:等腰梯形ABCD的周长为18,腰AD=4,等腰梯形ABCD的中位线EF=5故答案为54【分析】此题主要考查的是三角形的中位线定理和梯形的中位线定理,用到的知识点:三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半首先根据梯形的中位线和平行线等分线段定理,发现三角形的中位线;再根据三角形的中位线定理,得到BC=2OF,AD=2OE,从而求得BCAD的值【解答】解:E、F分别是AB、CD的中点,EF是梯形ABCD的中位线,EFBCAD,OB=OD,BC=2OF,AD=2OE,BCAD=2(FOEO)=23=6故答案为65【分析】本题主要考查了梯形以及平行四边形的性质,解决问题的关键是作辅助线,构造矩形ABHD解题时注意:全等三角形的对应边相等,这是得出方程的依据(1)A、B、Q、P四点构成的图形是梯形,根据图形的面积公式进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025护理历年自考试题及答案
- 算筹计数法题目及答案
- 2024年医院后勤保障部工作总结及2025年计划
- 2025二手房购房合同协议书标准版
- 室内装饰设计师四级复习测试附答案
- 2025租赁合同集合
- 全渠道零售企业线上线下融合趋势研究及案例分析
- 2025大连市汽车销售合同示范文本
- 旗帜工程实施方案(3篇)
- 酒店厨房厨具工程方案(3篇)
- 材料作文点拨课件+2025-2026学年统编版语文九年级上册
- 无线wifi安装协议书
- 中国智能驾驶商业化发展白皮书(2025):平权时代智驾商业落地的破局之路
- 小学科学新教科版二年级上册全册教案(2025秋版)
- 婚内财产协议书2025
- 虚拟电厂柔性控制系统用户手册
- 颅内压增高和脑疝
- 胡杨林导游词
- 四年级语文下册课外阅读《青铜葵花》导读课 课件(共24张PPT)
- MR在梨状肌综合征的诊断中的应用
- 检修安全培训课件
评论
0/150
提交评论