(华师版初中数学教案全)第二十四章图形的相似.doc_第1页
(华师版初中数学教案全)第二十四章图形的相似.doc_第2页
(华师版初中数学教案全)第二十四章图形的相似.doc_第3页
(华师版初中数学教案全)第二十四章图形的相似.doc_第4页
(华师版初中数学教案全)第二十四章图形的相似.doc_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

尤新教育辅导学校第二十四章 图形的相似相似三角形1一 教学目标:1 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。2 能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二 教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明三 教学过程:(一) 类比联想,动手实验1 回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边、对应角相等)。2 让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系? (二)直观演示,展示新知 A/1 相似三角形的定义 C将上面所截得的三角形移出,记为 B/ A ABC,原三角形记为 ABC,因此有A= A 。,BB B= B, C, B C,即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。 定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 2表示方法: 教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。3 相似三角形的性质:相似三角形的对应角相等,对应边成比例。4 相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调: ABC与 ABC的相似比是k,则 ABC与 AB C的相似比是。练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:所有的等腰三角形都相似。所有的等边三角形都相似。所有的直角三角形都相似。所有的等腰直角三角形都相似。教师示范一个规范过程,让学生模仿,学会用定义来解决问题。 A(三)范例研讨,迁移练习: 1例1。如图,在 ABC中, D E DE/BC,D。E分别在AB,AC上。 求证:ADEABC B C F 师生共同探讨:(1) 目前要证明两个三角形相似只能根据什么?(定义)(2) 根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3) ADE与ABC满足“对应角相等”吗?为什么?(4) 对应边成比例,由“DE/BC”的条件可得到怎样的比例式? (5) 本题的关键归结为“只要证明什么”?(6) 根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF/AB) 教师板演证明过程。2如图,DE/BC,D、E分别在BA、CA的延长线上,D EADE与ABC 相似吗? A相似C B 由此得到预备定理:3定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。4例2,如图,D为ABC的AB边上的一点,过点D作 C DE/AC,交BC于E,已知BE:EC=2:1,AC=6CM, 求DE的长。5、练习:P122页1、2、36、课后拓展(机动): (1)如图甲,已知 ABD ACB,则AD:AB= : , AB:BD= : ,如果AD=2,DC=1,那么AB= (2),如图乙,在 ABC中,AD是角平分线,求证: 。 A A DB C B D C 图甲 图乙 五、归纳总结、布置作业:1 今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。作业相似三角形2四 教学目标:1 知识目标:(1)近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)巩固判定三角形相似的预备定理及应用 掌握判定三角形相似的其他三个方法2 能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。五 教学重点、难点:重点:判定三角形相似的其他三个方法难点;判定三角形相似的其他三个方法及应用三 课堂探究:探究一 在一张方格纸上画一个三角形,再画一个三角形,使它的各边长都是原来各边长的k倍,度量这两个三角形的对应角 它们有什么特点? 你认为这两个三角形之间是什么关系?BCA 你能把理由说来与大家分享吗 ED 如图:ABC和中, , 求证;ABC证明:截,过D作DE ABCABC结论:如果两个三角形的三组对应边的比相等,那么这两个三角形相似 备注探究二 利用刻度尺和量角器画ABC和,使A=,量BC、的长度,量B、C、的度数你发现BC、的长度有什么关系?你发现B、C、的度数有什么关系?由、能得ABC和有什么关系?结论:如果两个三角形的两组对应边的比相等,且夹角相等,那么这两个三角形相似改变A和K的大小,是否有同样的结论?请同学们自己证明这个结论ABC和,使B=, , 这两个三角形相似吗?探究三作ABC和,使A=、B=,分别度量两个三角形的边长你发现C与有什么关系?你发现、 、 有什么关系?由、能得ABC和有什么关系?结论:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似请同学们自己证明这个结论四 例题欣赏例1:根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=7、AC=14=、=7、=14 AB=4、 BC=6、AC=8 =12、 =18、=21五、 课堂练习1、根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=8、AC=15=、=16、=30 AB=10、 BC=8、AC=16 =20、 =16、=322、图中的两个三角形是否相似/3、要做两个形状相同的三角形框架,其中一个的三边长为3、4、5,另一个三角形的一边长为2,它的另两条边长为多少?你有几个答案?4、底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论?5如图:RtABC中,CD是斜边上的高,ACD和ACBD和ABC相似吗?证明你的结论? 六、归纳总结、布置作业:3 今天学习了相似三角形的三个判定,作业相似三角形的性质教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。2、灵活运用相似三角形的判定和性质,提高分析,推理能力。过程与方法:1、对性质定理的探究经历观察猜想论证归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。情感与态度:在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。教学重点:相似三角形性质定理的探索及应用教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系教学方法与手段:探究式教学、小组合作学习、多媒体教学教学过程:一、创设情境,引入新课1、我们已经学了相似三角形的哪些性质?2、问题情境:某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?二、实践交流,探索新知1、看一看:ABC与ABC有什么关系?为什么?2、算一算:ABC与ABC的相似比是多少?ABC与ABC的周长比是多少?面积比是多少?3、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?5、在学生思考、讨论的基础上给出证题过程(多媒体)6、归纳小结;相似三角形性质定理2相似三角形的周长比等于相似比,面积比等于相似比的平方。三、基础训练,加深理解练一练:已知两个三角形相似,请完成下列表格:相似比2周长比面积比10000归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。四、综合应用,解决问题已知:如图,DEBC,AB=30m,BD=18m,ABC的周长为80m,面积为100m2,求ADE的周长和面积?五、拓展延伸,共同提高1、 过E作EFAB交BC于F,其他条件不变,则EFC的面积等于多少?平行四边形BDEF的面积为多少?2、 若设SABC=S,SADE=S1,SEFC=S2,试猜想:S与S1、S2之间存在怎样的关系?六、类似猜想,深入探究探究:如图,DEBC,FGAB,MNAC,且DE、FG、MN交于点P,若设SDMP=S1,SPEF=S2,SGNP=S3,SABC=S,S与S1、S2、S3之间是否也有类似结论?猜想并加以论证。七、回顾反思,畅谈心得本节课你有何收获?1、这节课我们学到了哪些知识?2、我们是用哪些方法获得这些知识的?3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?八、布置作业1、作业本2、3(2)(3)、4、52、探究推理过程课外整理完成,各组自行组织讨论交流。教学设计说明:1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察猜想论证归纳的数学思维过程。3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。位似图形(一)一、教学目标: 1、了解位似图形及其有关概念,了解位似图形上任意一对对应点到位似中心的距离之比等于位似比2、利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展学生的数学应用意识和动手操作能力二、教学重点、难点:重点:利用位似图形的定义能判断两个图形是否是位似图形及位似图形的性质的运用难点:判断位似图形三、教学过程:1、诊断补偿: 相似三角形的判定和性质(生口答,集体矫正)2、创设情境,引入新课 每个图中的两个四边形ABCD和四边形ABCD都是相似图形。观察下面的五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?(生思考后小组讨论完成)生全班交流:所有对应点的连线交于一点。(师总结引出位似图形)3、探究释疑精讲提炼: 如果两个相似图形的每组对应所在的直线都交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议:回答问题:(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系? (2)在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?(生动手操作,并讨论总结)总结:1、位似中心可在两图形的外部、内部、边上或顶点处2、通过测量、计算发现位似图形的对应点到位似中心的距离之比等于3:1,恰好等于两个位似图形的位似比。3、位似图形中的两个图形的方向相同或者相反。由定义及上述总结可得:位似图形的性质: 位似图形是相似形,位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。4、范例点拨:例1、如图,D,E分别是AB,AC上的点。(1) 如果DEBC,那么ADE和ABC是位似图形吗?为什么?(2) 如果ADE和ABC是位似图形,那么DEBC吗?为什么?点拨:位似图形的定义既是性质,又是位似图形的判定方法。第一题分两步进行,即先说明是相似图形,再说明对应点的连线交于一点。(生完成后集体矫正步骤)想一想:在上图中,位似图形的对应线段AB与AB是否平行?BC与BC,CD与CD,AD与AD是否平行?为什么?师总结:一般地,位似图形的对应线段互相平行或在同一条直线上。5、题组训练:1、随堂练习1、师生共同完成2、如图,AB,CD相交于点E,ACDB。ACE与BDE是位似图形吗?为什么?(一生板演,其余同练,集体矫正)3、图中的两个直角三角形是位似图形吗?如果是,作出位似中心。6、交流评价:位似图形的定义及判定方法位似图形中的两个相似图形的方向一致或相反,对应线段互相平行或在同一条直线上。7、布置作业:课后反思:本节课的重点是学生掌握位似图形的定义及性质,并能利用定义及性质进行简单的推理,但利用定义来判定两个已知图形是否是位似图形并不方便,因为我也是第一次接触本节知识,可以说是和学生处于相同的起点,为此,我上网查询了有关的资料,发现位似图形的一个显著的特点是两个相似图形的方向一致或者相反,对应线段平行。这样在课堂上我引导学生发现这个结果,使课程进行非常顺利。因此在备课时把师生放在同一起跑线上,更有利于让师了解学生,便于更好的完成教学任务。 位似图形教案设计 教学目标:1、知识目标:了解位似图形及其有关概念;了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。2、能力目标:利用图形的位似解决一些简单的实际问题;在有关的学习和运用过程中发展学生的应用意识和动手操作能力。3、情感目标:通过学习培养学生的合作意识;通过探究提高学生学习数学的兴趣。教学重点:探索并掌握位似图形的定义和性质;教学难点:运用定义和性质进行简单的位似图形的证明和计算。教学方法:从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。教学准备:刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、教学手段:小组合作、多媒体辅助教学教学设计说明:1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.教学过程:一、创设情境 引入新知观察大屏幕有五个图形,每个图形中的四边形ABCD和四边形A1B1C1D1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?ABCDB1A1C1D1B1C1D1ABCDA1B1C1D1ABCDABCDA1B1C1D1ABCDC1A1D1B1(1)(2)(3)(4)(5)(学生经过小组讨论交流的方式总结得出:)特点:(1)两个图形相似: (2)每组对应点所在的直线交于一点。二、合作交流 探究新知请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议 观察上图中的五个图形,回答下列问题: (1)在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2)在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)位似图形对应点到位似中心的距离之比等于相似比。由此得出:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用 深化理解(同学们观察大屏幕出示的问题)ABCDE例1如图D,E分别是AB,AC上的点。(1)如果DEBC,那么ADE和ABC位似图形吗?为什么?(2)如果ADE和ABC是位似图形,那么DEBC吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?根据是位似图形的定义。需要两个条件:!、ADE和ABC相似;2、对应点所在的直线交于一点。问题2:已知ADE和ABC是位似图形,我们根据什么又能得出什么结论?根据位似图形的性质得出:1、对应点和位似中心在同一条直线上;2、它们到位似中心的距离之比等于相似比。(一生口述师板书:)解:(1)ADE和ABC是位似图形.理由是:DEBCAED=B, AED=C.ADEABC.又点A是ADE和ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,ADE和ABC是位似图形。(2)DEBC.理由是:ADE和ABC是位似图形ADEABC.ADE=B,DEBC.四、继续观察 拓展提高(同学们继续观察屏幕展示的图形)在图(1)(5)中,位似图形的对应线段AB与A1B1是否平行?BC与B1C1,CD与C1D1,AD与A1D1是否平行?为什么?同桌观察探究并发言:对应边平行或在同一条直线上。(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)五、反馈练习 落实新知挑战自我:1、下面每组图形中都有两个图形.(1)(2)(3)(4)(5)(6)(1)哪一组中的每两个图形是位似图形?(2)作出位似图形的位似中心CADBE2、如图AB,CD相交于点E,ACDB. ACE与BDE是位似图形吗?为什么?(此环节由学生独立完成,第二题让一名学生到黑板上板书,以备面对全体矫正) 六、归纳小结 反思提高请同学们谈一谈本节课的有什么收获和感想?本节课我们学习了位似图形,知道了什么叫位似图形,位似图形有什么性质?我们可以利用定义来证明位似图形,已知位似图形我们可以根据性质得到有关结论。观察并判断位似图形的方法是,一要看是否相似,二要看对应边是否平行或在同一条直线上。七、自我评价 检测新知1、如果两个位似图形的每组_所在的直线都_,那么这样的两个图形叫做位似图形,这个点叫做_,这时的相似比又叫做_。2、位似图形的对应点到位似中心的距离之比等于_;位似图形的对应角_,对应线段_(填:“相等”、“平行”、“相交”、“在一条直线上”等)3、位似图形的位似中心,有的在对应点连线上,有的在_的延长线上。4、如果两个位似图形成中心对称,那么这两个图形_(填“一定”、“不”或“可能”等)5、下列每组图形是由两个相似图形组成的,其中_中的两个图形是位似图形。(由学生独立完成,教师巡视。最后公布答案,教师并将发现的问题及时矫正有利于学生知识的巩固和提高)八、课后延伸 探索创新在如图所示的图案中,最外圈的8个三角形组成的图形和次外圈的8个红色三角形组成的图形是位似图形吗?如果是,为似比是多少?课题:位似图形一、 位似图形有关概念和性质:三、随堂练习(学生板演)1、 概念;2、 性质二、例题 四、拓展思考题答案九、板书设计:十、课后反思:1、存在问题:(1)学生在动手操作,与探究位似图形的共同特征环节比较顺利,但是归纳性质用语言表达时则较困难;(2)证明位似图形的思路还需要在老师的提示下找到,没能及时内化;(3)内外位似区别不清楚。2、改进意见:(1)通过合作交流不断提高学生的语言表达能力和形象思维能力;(2)注意通过定理公式的逆向运用发展学生的逆向思维;(3)内外位似图形如果能举例说明并让学生自己来鉴别会掌握得更好。课题:(第9课时)图形的位似一、教学目标: 1、通过实验、操作、思考活动认识位似图; 2、会利用图形位似原理将一个图形放大或缩小。教学重点:利用位似形将一个图形按一定的比例放大或缩小。教学难点:将图形放大与缩小所蕴涵的数学原理。二、课前预习: 1、看书P.1351372、通过预习我们知道了 。三、课堂教学 1、情境创设 2、探索归纳如图,已知点O和ABC。画射线OA、OB、OC,分别在OA、OB、OC上取点A、B、C,使,画ABC。ABC与ABC是否相似吗?为什么? 画射线OA、OB、OC,分别在OA、OB、OC的反向延长线上取点A、B、C,使,画ABC。ABC与ABC是否相似吗?为什么?结论: 。 3、例题选讲 选取适当的比例,将下图中的图形放大; 选取适当的比例,将下图中的图形缩小。以点P为位似中心,按相似比21将图形放大,得图;以点Q为位似中心,按相似比12将图形缩小,得图。图与图的相似比是 ,面积的比是 。4、当堂巩固如图,以AB的中点为位似中心,按比例尺12把矩形ABCD缩小。如图,以点B为位似中心,按比例尺21把ABC放大。 5、课堂小结今天这节课你有什么收获? 6、课堂检测 用作位似形的方法,可以将一个图形放大或缩小,位似中心( )。(A)只能选在原图形的外部 (B)只能选在原图形的内部 (C)只能选在原图形的边上 (D)可以选择任意位置设四边形ABCD与四边形ABCD是位似图形,且位似比为k。给出下列4个等式:;ABCABC。其中,等式成立的个数为( ) (A)1个 (B)2个 (C)3个 (D)4个 以点O为位似中心,作出四边形ABCD的位似图形,使得新图形与原图形的相似比为21。xyO1111在所给平面直角系中描点、画图:画出点:A(4,0)、B(2,3)、C(1,1)、D(3,2)、E(2,0)、F(3,2)、G(1,1)、H(2,5),并用线段顺次连接上述各点;以点(2,0)为位似中心,按比例12将中的图形缩小,并写出中各对应点的对应点的坐标。7、巩固提高选取适当的比例,把你喜欢的一此图形放大或缩小。在图中,ABC的内部任取一点O,连接AO、BO、CO,并在AO、BO、CO这三条线段的延长线上分别取点D、E、F,使,画出DEF。你认为DEF与ABC相似吗?为什么?你认为它们也有位似形的特征吗?如图,直角梯形ABCD中,ABDC,ABC90,ADBD,AC与BD相交于点E,ACBD,过点E作EFAB,交AD于点F。 说明AFBE的理由; AF2与AEEC有有的数量关系?为什么?如图,用下面的方法可以画AOB的“内接等边三角形”。阅读后证明相应的问题。 画法:在AOB内画等边三角形CDE,使点C在OA上,点D在OB上; 连接OE并延长,交AB于点E,过点E作ECEC,交OA于点C,作EDED,交OB于点D; 连接CD。 则CDE是AOB的内接三角形。 请你判断CDE是否是等边三角形,并说明理由。24.3 相似三角形1相似三角形教学目标: 1知道相似三角形的概念;会根据概念判断两个三角形相似。 2能说出相似三角形的相似比,由相似比求出未知的边长。教学过程:一、复习 什么是相似形?识别两个多边形是否相似的标准是什么?二、新课 1相似三角形的有关概念: 由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似。 三角形是最简单的多边形。由此可以说什么样的两个三角形相似?如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在ABC与ABC中,AA,BB,CC 那么ABC与ABC相似,记作ABCABC;“”是表示相似的符号,读作“相似于”,这样两三角形相似就读作:“ABC相似于ABC”。由于AA,BB,CC,所以点A的对应顶点是A,B与B是对应顶点,C与C是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边如果记K,那么这个K就表示这两个相似三角形的相似比相似比就是它们的对应边的比,它有顺序关系如ABCABC,它的相似比为K,即指K,那么ABC与ABC的相似比应是,就不是K了,应为多少呢?同学们想一想? 2ABC中,D,E是AB、AC的中点,连结DE,那么ADE与ABC相似吗?为什么?如果相似,它们的相似比为多少? 如果点D不是AB中点,是AB上任意一点,过D作DEBC,交AC边于E,那么ADE与ABC是否也会相似呢? 判断它们是否相似,由对应角是否相等,对应边是否成比例去考虑。能否得对应角相等?根据平行线性质与一个公共角可以推出,而对应边是否成比例呢?目前还没有什么依据,同学们不妨用刻度尺量一量,算一算是否成比例?通过度量,计算发现所以可以判断出ADE与ABC会相似。 若是如图DEBC,与BA、CA延长线交于D、E,那么ADE与ABC还会相似吗?试一试看。如果相似写出它们对应边的比例式 3如果ABCABC,相似比K1,你会发现什么呢? 1,所以可得ABAB,BCBC,ACAC,因此这两个三角形不仅形状相同,且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例,试问: 全等的两个三角形一定相似吗? 相似的两个三角形会全等吗? 全等的符号与相似的符号之间有什么关系与区别? 4例:如果一个三角形的三边长分别是5、12、13,与其相似的三角形的最长边是39,那么较大三角形的周长是多少?较小三角形与较大三角形的周长的比是多少?分析:这两个三角形会相似,对应边是哪些边?相似比是多少?哪一个三角形较大?要计算出它的周长还需求什么?根据什么来求?三、练习判断下列两个三角形是否相似?简单说明理由,如果相似,写出对应边的比例四、小结 1填空。 的三角形叫做相似三角形。 2两个相似三角形的相似比为1,这两个三角形有什么关系?3、如果一条直线平行于三角形一边,与其它两边或其延长线相交截得的三角形与原三角形相似吗?指出它们的对应边。五、作业P54 1、2、3。2相似三角形的判定第一课时 相似三角形的判定(一)教学目标: 1会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。2会用这种方法判断两个三角形是否相似。 教学过程:一、复习 1两个矩形一定会相似吗?为什么? 2如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例。3如图ABC与BC会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。二、新课讲解 同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30的直角三角尺,它们的大小不一样。这些三角形是相似的,我们就从平常所用的三角尺入手探索。 (1)是45角的三角尺,是等腰直角三角形会相似。 (2)是30的三角尺,那么另一个锐角为60,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。是这样吗?请同学们动手试一试:1画两个三角形,使它们的三个角分别相等。 画ABC与DEF,使AD、BE,CF,在实际画图过程中,同学们画几个角相等?为什么? 实际画图中,只画AD,BE,则第三个角C与F一定会相等,这是根据三角形内角和为180所确定的。 2用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果。 3发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。 4两个矩形的四个角也都分别相等,它们为什么不会相似呢? 这是由于三角形具有它特殊的性质。三角形有稳定性,而四边形有不稳定性。 于是我们得到识别两个三角形相似的一个较为简便的方法: 如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。 同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢? 例题:1如图两个直角三角形ABC和ABC中,CC90,AA,判断这两个三角形是否相似。2在ABC与ABC中,AA50,B70,B60,这两个三角形相似吗?3如图,ABC中,DEBC,EFAB,试说明ADEEFC。三、练习 1ABC中,ACB90,CDAB于D,找出图中所有的相似三角形。 2ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使ADE与ABC会相似,你怎样画这条直线,并说明理由。和你的同伴交流作法是否一样?四、小结本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似。五、作业 P64 1 第二课时 相似三角形的判定(二)教学目标 1会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似。2能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。教学过程一、复习 1现在要判断两个三角形相似有哪几种方法? 有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似。 2如图ABC中,D、E是AB、AC上三等分点(即ADAB,AEAC),那么ADE与ABC相似吗?你用的是哪一种方法? 由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。二、新课讲解 同学们通过量角或量线段计算之后,得出:ADEABC。从已知条件看,ADE与ABC有一对应角相等,即AA(是公共角),而一个条件是ADAB,AEAC,即是,;因此。ADE的两条边 AD、AE与ABC的两条边AB、AC会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使ADE与ABC相似呢? 图中两个三角形的一组对应边AD与AB的长度的比值为,将点E由点A开始在AC上移动,可以发现当AEAC时,ADE与ABC相似。此时 同学们画两个三角形,ABC与ABC,使之AA,AB2AB,AC2AC,量一量BC与BC的长,计算BC:BC与同伴交流,是否与,相等?再量一量B与B、C与C,它们是否对应相等呢?这样的两个三角形相似吗? 于是有识别两个三角形相似的第二种简便方法: 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简单地说;两边对应成比例且夹角相等,两三角形相似。 强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似。你能画出有两边会对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)BB, 例题: 1(课本中例3)判断图中AEB与FEC是否相似? 2如图ABC中,D、E是AB、AC上点,AB7.8,AD3,AC6,CE2.1,试判断ADE与ABC是否会相似,小张同学的判断理由是这样的: 解:因为ACAE+CE,而AC6,CE2.1, 故 AE6-2.13.9 由于 所以ADE与ABC不会相似。 你同意小张同学的判断吗?请你说说理由。 小张同学的判断是错误的。 因为,所以而 A是公共角,AA, 所以ADEACB 请同学再做一次实验,看看如果两个三角形的三条边都成比例,那么这两个三角形是否相似? 看课本页“做一做”。 通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似简单说成:三边成比例两三角形相似。例:ABC和ABC中,AB6cm,BC8cm,ACl0cm,AB18cm,BC24cm,AC30cm,试判定它们是否相似,并说明理由。三、练习课本59页练习1、2,3四、小结到现在我们学习了识别两个三角形是否相似的三种较简便的方法,请同学回忆说出五、作业 P6443相似三角形的性质教学目标 会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方。教学过程一、复习 1识别两个三角形相似的简便方法有哪些?2在ABC与ABC中,ABl0cm,AC6cm,BC8cm,AB5cm,AC3cm,BC4cm,这两个三角形相似吗?说明理由。如果相似,它们的相似比是多少?二、新课讲解上述两个三角形是相似的,它们对应边的比就是相似比,ABCABC,相似比为2 。相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢? 一个三角形内有三条主要线段;高、中线、角平分线。如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系。 同学画出上述的两个三角形,作对应边AB和AB边上的高,用刻度尺量一量CD与CD的长,等于多少呢?与它们的相似比相等吗?得出结论: 相似三角形对应高的比等于相似比。我们能否用说理的方法来说明这个结论呢?同学们用上面类似方法,得出:相似三角形对应中线的比等于相似比;相似三角形对应角平分线的比等于相似比。 两个相似三角形的周长比会等于相似比吗? 两个相似三角形的面积之间有什么关系呢?看如图的三个三角形,三角形(2)的各边长分别是(1)的2倍,(3)的各边长分别是(1)的3倍,所以它们都是相似的,填空: (2)与(1)的相似比为( ),(2)与(1)的面积比为( ), (3)与(1)的相似比为( ),(3)与(1)的面积比为( ) (3)与(2)的相似比为( ),(3)与(2)的面积比为( )。 以上可以看出当相似比为K时,面积比为K2。对于一般相似的三角形都具有这种关系,可以得出结论:相似三角形的面积比等于相似比的平方。三、练习 1.ABCABC,相似比为3:2,则对应中线的比等于( )。 2相似三角形对应角平分线比为0.2,则相似比为( ),周长比为( ),面积比为( )3ABCABc,相似比为,已知ABC的面积为18cm2,那么 ABC的面积为( )。四、小结(填空形式,同学回答)相似三角形( )相等,( )的比等于相似比,面积的比等于( )。五、作业 P642、64、相似三角形的应用教学目标会应用相似三角形的有关性质,测量简单的物体的高度或宽度。教学过程一、复习 1、相似三角形有哪些性质? 2如图,B、C、E、F是在同一直线上,ABBF,DEBF,ACDF, (1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论