1.3.1函数的单调性与导数 (3)ppt课件.ppt_第1页
1.3.1函数的单调性与导数 (3)ppt课件.ppt_第2页
1.3.1函数的单调性与导数 (3)ppt课件.ppt_第3页
1.3.1函数的单调性与导数 (3)ppt课件.ppt_第4页
1.3.1函数的单调性与导数 (3)ppt课件.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 3 1函数的单调性与导数 高二数学选修2 2第一章导数及其应用 1 4 对数函数的导数 5 指数函数的导数 3 三角函数 1 常函数 C 0 c为常数 2 幂函数 xn nxn 1 一 复习回顾 基本初等函数的导数公式 2 复习 导数的运算法则 3 一 复习回顾复合函数的导数 1 复合函数的概念 对于函数y f x 令u x 若y f u 是中间变量u的函数 u x 是自变量x的函数 则称y f x 是自变量x的复合函数 2 复合函数的导数 设函数在点x处有导数 函数y f u 在点x的对应点u处有导数 则复合函数在点x处也有导数 且或记 4 函数y f x 在给定区间G上 当x1 x2 G且x1 x2时 函数单调性判定 单调函数的图象特征 1 都有f x1 f x2 则f x 在G上是增函数 2 都有f x1 f x2 则f x 在G上是减函数 若f x 在G上是增函数或减函数 增函数 减函数 则f x 在G上具有严格的单调性 G称为单调区间 G a b 二 复习引入 5 在 0 和 0 上分别是减函数 但在定义域上不是减函数 在 1 上是减函数 在 1 上是增函数 在 上是增函数 概念回顾 画出下列函数的图像 并根据图像指出每个函数的单调区间 6 1 函数的单调性也叫函数的增减性 2 函数的单调性是对某个区间而言的 它是个局部概念 这个区间是定义域的子集 3 单调区间 针对自变量x而言的 若函数在此区间上是增函数 则为单调递增区间 若函数在此区间上是减函数 则为单调递减区间 以前 我们用定义来判断函数的单调性 在假设x1 x2的前提下 比较f x1 f x2 与的大小 在函数y f x 比较复杂的情况下 比较f x1 与f x2 的大小并不很容易 如果利用导数来判断函数的单调性就比较简单 7 2 再观察函数y x2 4x 3的图象 总结 该函数在区间 2 上单减 切线斜率小于0 即其导数为负 而当x 2时其切线斜率为0 即导数为0 函数在该点单调性发生改变 在区间 2 上单增 切线斜率大于0 即其导数为正 8 x y O x y O x y O x y O y x y x2 y x3 观察下面一些函数的图象 探讨函数的单调性与其导函数正负的关系 在某个区间 a b 内 如果 那么函数在这个区间内单调递增 如果 那么函数在这个区间内单调递减 如果恒有 则是常数 9 动态演示 单调性 导数的正负 函数及图象 切线斜率的正负 函数单调性与导数的关系 k 0 k 0 k 0 k 0 递增 递减 10 函数单调性与导数正负的关系 注意 应正确理解 某个区间 的含义 它必是定义域内的某个区间 如果恒有 则是常数 11 例1已知导函数的下列信息 当1 x 4时 当x 4 或x 1时 当x 4 或x 1时 试画出函数的图象的大致形状 解 当1 x 4时 可知在此区间内单调递增 当x 4 或x 1时 可知在此区间内单调递减 当x 4 或x 1时 综上 函数图象的大致形状如右图所示 题型 应用导数信息确定函数大致图象 12 已知导函数的下列信息 试画出函数图象的大致形状 分析 题型 应用导数信息确定函数大致图象 13 已知导函数的下列信息 试画出函数图象的大致形状 分析 题型 应用导数信息确定函数大致图象 解 的大致形状如右图 14 A B C D C 08浙江理工类 高 考 试 练习 尝 设是函数的导函数 的图象如右图所示 则的图象最有可能的是 15 例2判断下列函数的单调性 并求出单调区间 解 1 因为 所以 因此 函数在上单调递增 2 因为 所以 当 即时 函数单调递增 当 即时 函数单调递减 题型 求函数的单调性 单调区间 16 例2判断下列函数的单调性 并求出单调区间 解 3 因为 所以 因此 函数在上单调递减 4 因为 所以 当 即时 函数单调递增 当 即时 函数单调递减 17 总结 当遇到三次或三次以上的 或图象很难画出的函数求单调性问题时 应考虑导数法 纳 1 什么情况下 用 导数法 求函数单调性 单调区间较简便 2 试总结用 导数法 求单调区间的步骤 归 总结 注 单调区间不以 并集 出现 18 3 证明可导函数f x 在 a b 内的单调性的方法 1 求f x 2 确认f x 在 a b 内的符号 3 作出结论 总结 19 求函数的单调区间 变1 求函数的单调区间 理解训练 解 的单调递增区间为 单调递减区间为 变3 求函数的单调区间 解 解 20 练习 判断下列函数的单调性 并求出单调区间 21 高 考 试 09年全国理 B 练习 尝 22 例3如图 水以常速 即单位时间内注入水的体积相同 注入下面四种底面积相同的容器中 请分别找出与各容器对应的水的高度h与时间t的函数关系图象 A B C D h t O h t O h t O h t O 23 一般地 如果一个函数在某一范围内导数的绝对值较大 那么函数在这个范围内变化得快 这时 函数的图象就比较 陡峭 向上或向下 反之 函数的图象就 平缓 一些 如图 函数在或内的图象 陡峭 在或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论