3.2.2空间线面关系的判定(2).ppt_第1页
3.2.2空间线面关系的判定(2).ppt_第2页
3.2.2空间线面关系的判定(2).ppt_第3页
3.2.2空间线面关系的判定(2).ppt_第4页
3.2.2空间线面关系的判定(2).ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间线面关系的判定 1 复习回顾 1 的充要条件是 2 设向量的夹角为 则 3 共面向量定理如果两个向量不共线 那么向量与向量共面的充要条件是 存在有序实数组 使得 4 直线的方向向量是 平面的法向量与的位置关系是 思考 我们能不能用直线的方向向量和平面法向量来刻画空间线面位置关系 设空间两条直线的方向向量为两个平面的法向量分别为 o b d c a 例1 如图 是平面的一条斜线 为斜足 为垂足 且求证 在平面内的一条直线 如果它和这个平面的一条斜线的射影垂直 那么它也和这条斜线垂直 三垂线定理 o b d c a 证明 因为所以因为所以所以因为所以所以即 变式练习 写出三垂线定理的逆定理 并用向量的方法加以证明 三垂线定理 在平面内的一条直线 如果它和这个平面的一条斜线的射影垂直 那么它也和这条斜线垂直 三垂线定理的逆定理 在平面内的一条直线 如果它和这个平面的一条斜线垂直 那么它也和这条斜线的射影垂直 o b d c a 已知 如图 是平面的一条斜线 为斜足 为垂足 且求证 例2 证明 如果一条直线和平面内的两条相交直线垂直 那么这条直线垂直于这个平面 直线与平面垂直的判定定理 已知 如图 求证 分析 要证明直线与平面垂直 只要证明该直线垂直于平面内任意一条直线 相交 不共线 又 共面 存在有序实数组 使得 例3 如图 在直三棱柱 中 是棱的中点 求证 证明 在直三棱柱 中 因为 所以因为 而所以 所以在中 因为所以 所以因为 且是棱中点 所以 所以 所以 所以 即 思考 还有其它的证明方法吗 利用相似形与线面垂直 分析 连结交于点因为所以 要证就是证即证 1 利用相似可以证明 从而 2 利用知道 即 你能试着建立适当的空间直角坐标系 用坐标表示向量 再证明它们互相垂直吗 证明 分别以所在直线为轴 轴 轴 建立空间直角坐标系 图中相应点的坐标为 所以 所以 即 三种方法的比较 证法一是几何向量法 要熟练掌握向量的加减运算及所满足的运算律 证法二是向量的坐标运算法 关键是要恰当地建立空间直角坐标系 探求出各点的坐标 证法三是几何向量法和立体几何法的综合运用 最终都是应用向量的数量积为0来证明线线垂直 变式2 在正方体abcd a1b1c1d1中 o为ac与bd得交点 g为cc1的中点 求证a1o 平面gbd 证明 设则 课堂小结 本节课主要研究了用向量的方法判定空间线线 线面垂直关系 如果要判定两条直线垂直 可以通过证明它们的方向向量 的数量积为0实现 同步练习 用坐标运算的方法 1 如图 在正方体中 相交于点 求证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论