




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲函数及其表示 考点梳理 一般地 设a b是两个 数集 如果按照某种确定的对应关系f 使对于集合a中的任意一个数x 在集合b中都有 确定的数f x 与之对应 那么就称 f a b为从集合a到集合b的一个函数 记作y f x x a 1 函数的定义域是指使函数有意义的自变量的取值范围 1 函数的概念 2 函数的定义域 非空 唯一 2 求定义域的步骤 写出使函数式有意义的不等式 组 解不等式 组 写出函数的定义域 注意用区间或集合的形式写出 3 常见基本初等函数的定义域 分式函数中分母不等于零 偶次根式函数 被开方式大于或等于0 一次函数 二次函数的定义域为 y ax a 0且a 1 y sinx y cosx 定义域均为 r r 1 在函数y f x 中 与自变量x的值相对应的y的值叫函数值 函数值的集合叫函数的值域 2 基本初等函数的值域 y kx b k 0 的值域是 3 函数的值域 r y ax a 0且a 1 的值域是 y logax a 0且a 1 的值域是 y sinx y cosx的值域是 y tanx的值域是 1 用 来表示两个变量之间函数关系的方法称为列表法 2 用 来表示两个变量之间函数关系的方法称为解析法 这个等式通常叫做函数的解析表达式 简称解析式 3 用 表示两个变量之间函数关系的方法称为图象法 4 函数的表示法 0 1 1 r 列表 等式 图象 y y r且y 0 r 在定义域内不同部分上 有不同的解析表达式 像这样的函数通常叫做 设a b是两个非空集合 如果按某种对应法则f 对于a中的每一个元素 在b中都有唯一的元素与之对应 那么这样的单值对应叫做集合a到集合b的 记作f a b 5 分段函数 6 映射的概念 分段函数 映射 函数与映射的区别与联系 1 函数是特殊的映射 其特殊性在于集合a与集合b只能是非空数集 即函数是非空数集a到非空数集b的映射 2 映射不一定是函数 从a到b的一个映射 a b若不是数集 则这个映射不是函数 一个命题规律在高考中 主要考查函数的定义域 分段函数的解析式和求函数值 属容易题 其中求解析式和定义域具有综合性 有时渗透在解答题中 近几年对函数概念的理解的考查也在加强 以填空题考查基本技能 助学 微博 答案 4 5 考点自测 2 2012 泰州二模 已知m 1 2 3 4 设f x g x 都是从m到m的函数 其对应法则如下表 则f g 1 解析因为g 1 4 所以f g 1 f 4 1 答案1 解析由0 x 1 得1 x 1 2 0 loga x 1 loga2 所以loga2 1 a 2 答案2答案2 3 2012 盐城检测 已知函数f x loga x 1 的定义域和值域都是 0 1 则实数a的值是 现在加密密钥码为y loga x 2 如上所示 明文 6 通过加密后得到密文 3 再发送 接受方通过解密密钥码解密得到明文 6 若接受方接到密文为 4 则解密后得到明文为 解析由题意 loga 6 2 3 所以a 2 密文为 4 令y 4 得log2 x 2 4 得x 14 即明文为14 答案14 5 2012 南通一模 为了保证信息安全传输 有一种称为秘密密钥的密码系统 其加密 解密原理如下 例1 1 2012 临沂调研 已知a b为两个不相等的实数 集合m a2 4a 1 n b2 4b 1 2 f x x表示把m中的元素x映射到集合n中仍为x 则a b等于 2 已知映射f a b 其中a b r 对应关系f x y x2 2x 对于实数k b 在集合a中不存在元素与之对应 则k的取值范围是 考向一函数与映射的概念 2 由题意知 方程 x2 2x k无实数根 即x2 2x k 0无实数根 4 1 k 1时满足题意 答案 1 4 2 1 方法总结 函数是一种特殊的对应 要检验给定的两个变量之间是否具有函数关系 只需要检验 定义域和对应关系是否给出 根据给出的对应关系 自变量在其定义域中的每一个值 是否都有唯一确定的函数值 p z q n 对应关系f 对集合p中的元素取绝对值与集合q中的元素相对应 p 1 1 2 2 q 1 4 对应关系f x y x2 x p y q p 三角形 q x x 0 对应关系f 对p中三角形求面积与集合q中元素对应 解析由于 中集合p中元素0在集合q中没有对应元素 并且 中集合p不是数集 所以 和 都不是集合p上的函数 由题意知 正确 答案 训练1 下列对应关系是集合p上的函数的是 填序号 考向二求函数定义域的方法 方法总结 求函数的定义域 其实质就是使函数解析式有意义为准则 列出不等式或不等式组 然后求出它们的解集 其准则一般是 分式中 分母不为零 偶次根式 被开方数非负 对于y x0 要求x 0 对数式中 真数大于0 底数大于0且不等于1 由实际问题确定的函数 其定义域要受实际问题的约束 1 y x2 2x x 0 3 解 1 配方法 y x2 2x x 1 2 1 y x 1 2 1在 0 3 上为增函数 0 y 15 即函数y x2 2x x 0 3 的值域为 0 15 考向三求函数的值域 例3 求下列函数的值域 2 分离常数法 方法总结 1 当所给函数是分式的形式 且分子 分母是同次的 可考虑用分离常数法 2 若与二次函数有关 可用配方法 3 若函数解析式中含有根式 可考虑用换元法或单调性法 4 当函数解析式结构与基本不等式有关 可考虑用基本不等式求解 5 分段函数宜分段求解 6 当函数的图象易画出时 还可借助于图象求解 训练3 求下列函数的值域 例4 1 已知f x 是二次函数 若f 0 0 且f x 1 f x x 1 试求f x 的解析式 考向四求函数的解析式 解 1 设f x ax2 bx c a 0 f 0 0 c 0 又f x 1 f x x 1 a x 1 2 b x 1 ax2 bx x 1 即2ax a b x 1 方法总结 函数解析式的求法 1 凑配法 由已知条件f g x f x 可将f x 改写成关于g x 的表达式 然后以x替代g x 便得f x 的解析式 2 待定系数法 若已知函数的类型 如一次函数 二次函数 可用待定系数法 3 换元法 已知复合函数f g x 的解析式 可用换元法 此时要注意新元的取值范围 训练4 2013 宿迁联考 如图放置的边长为1的正三角形pab沿x轴滚动 设顶点a x y 的纵坐标与横坐标的函数关系式是y f x 则f x 在区间 2 1 上的解析式是 近几年高考对值域的考查难度大大降低 值域的考查常与单调性 最值相结合 热点突破4求函数值域的常见方法 审题与转化 第一步 由fk x f x 恒成立可得k f x 恒成立 第二步 根据f x 2 x e x的形式 可用导数法求f x 的最大值 规范解答 第三步 依题意k f x 恒成立 f x 1 e x 当x 0时 f x 0 即f x 在 0 上是增函数 0 上是减函数 当x 0时 f x 取得最大值f 0 2 0 1 1 故k 1 即k的最小值为1 反思与回顾 第四步 求函数值域的常见方法 2 图象法 基本初等函数 或由其经简单变换所得的函数 或用导数研究极值点及单调区间后 可通过画示意图观察得值域 3 利用函数的有界性 形如sin f y x2 g y 由 sin 1 x2 0可解出f y g y 的范围 从而求出其值域或最值 4 换元法化归为基本函数的值域 高考经典题组训练 解析 是无理数 g 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家居安全防范系统安装与定期检修合同
- 双方合同纠纷协议书
- 水资源管理体制改革试题及答案
- 医患纠纷仲裁协议书
- 员工合同更改协议书
- 合伙合作合同协议书
- 2025企业正式员工聘用合同范本
- 2025年废旧电子产品回收物流体系构建研究报告
- 商标权利分配协议书
- 厂区树木修剪协议书
- 东北三省精准教学联盟2024-2025学年高三下学期3月联考地理试题(含答案)
- 空调安装施工方案
- 英语-湖北省武汉市2025届高中毕业生二月调研考试(武汉二调)试题和答案
- GB/T 45140-2025红树林生态修复监测和效果评估技术指南
- 《新闻报道与写作技巧》课件
- 货币金融学课件-商业银行
- 2025年山东水发集团有限公司总部及权属一级公司招聘笔试参考题库附带答案详解
- 医疗技术临床应用管理培训
- 七年级数学下册 第二学期 期末测试卷(苏科版 2025年春)
- 浅析城中村改造业务实施的难点与思路
- 全国班主任比赛一等奖班主任经验交流《春风化为雨润物细无声》精美课件
评论
0/150
提交评论