




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录contents 考情精解读 考点1 a 知识全通关 b 题型全突破 c 能力大提升 考法1 考法2 考法4 考法3 易混易错 考点5 考法6 考点2 考情精解读 考纲解读 命题趋势 命题规律 数学第四章 第四讲正 余弦定理及解三角形 1 掌握正弦定理 余弦定理 并能解决一些简单的三角形度量问题 2 能够运用正弦定理 余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 考纲解读 命题规律 命题趋势 数学第四章 第四讲正 余弦定理及解三角形 考纲解读 命题规律 命题趋势 数学第四章 第四讲正 余弦定理及解三角形 考纲解读 命题规律 返回目录 1 热点预测预计高考对本讲内容的考查以解三角形为主 题型为选择题 填空题或解答题 分值4 16分 2 趋势分析预计2018年高考会以解三角形为载体 与三角函数 不等式 向量等相结合命题 复习时应予以关注 命题趋势 数学第四章 第四讲正 余弦定理及解三角形 知识全通关 考点一正 余弦定理及其应用 继续学习 数学第四章 第四讲正 余弦定理及解三角形 1 正弦 余弦定理在 abc中 若角a b c所对的边分别是a b c r为 abc的外接圆半径 则 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 注意 1 利用余弦定理求边长 实质是解一元二次方程 得到方程的根即边长 然后根据已知条件对方程的根进行取舍 2 在 abc中 已知a b和a 利用正弦定理时 会出现解的不确定性 一般可根据三角形中 大边对大角 的性质来取舍 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 3 斜三角形的类型与解法正弦定理 余弦定理的每一个等式中都包含三角形的四个元素 三角形有三个角和三条边 三角形的边与角称为三角形的元素 如果其中三个元素是已知的 至少要有一个元素是边 那么这个三角形一定可解 关于斜三角形的解法 根据已知条件及适用的定理 可以归纳为以下四种类型 设三角形为 abc 角a b c所对的边分别为a b c 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 考点二解三角形的实际应用 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 说明有关测量中的几个术语如下 继续学习 数学第四章 第四讲正 余弦定理及解三角形 数学第四章 第四讲正 余弦定理及解三角形 解三角形实际应用题的步骤 返回目录 规律总结 题型全突破 考法一利用正 余弦定理解三角形 继续学习 考法指导1 已知三角形任意两角及一边 用正弦定理求解时 只有一解 2 已知三角形任意两边与其中一边的对角 用正弦定理求解时 可能有一解 也可能有两解 如已知a b及角a 解的情况如下 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 考法指导判断三角形的形状 主要有如下两种方法 1 化边 利用正弦 余弦定理把已知角转化为边的关系 通过因式分解 配方等得出边的相应关系 如 若a b 则三角形为等腰三角形 若c2 a2 b2 则三角形为以角c为直角的直角三角形 若c2 a2 b2 则三角形为以角c为钝角的钝角三角形 若c2 a2 b2 则只能得到三角形中角c为锐角 如果同时有a2 c2 b2 b2 a2 c2都成立 此三角形为锐角三角形 有时可能得到两个结论a b 且c2 a2 b2 此时三角形为等腰直角三角形 化简过程中不能随便约分 要把关系找充分 从而正确判断三角形的形状 考法二三角形形状的判断 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 突破攻略 继续学习 三角形形状的判断要从角或边长之间的关系上来考虑 除了应用正弦定理外 还要注意三角函数中公式的灵活应用和性质的应用 数学第四章 第四讲正 余弦定理及解三角形 考法三与面积 范围有关的问题 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 突破攻略 继续学习 在解三角形的问题中 三角形内角和定理起着重要作用 在解题中要注意根据这个定理确定角的范围及三角函数值的符号 防止出现增解或漏解 数学第四章 第四讲正 余弦定理及解三角形 考法四正 余弦定理在平面几何中的应用 继续学习 考法指导 1 把所提供的平面图形拆分成若干个三角形 然后在各个三角形内利用正弦 余弦定理求解 2 寻找各个三角形之间的联系 交叉使用公共条件 求出结果 做题过程中 要用到平面几何中的一些知识点 如相似三角形的边角关系 平行四边形的一些性质 要把这些性质与正弦 余弦定理有机结合 才能顺利解决问题 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 图4 4 2 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 图4 4 3 考法五解三角形的实际应用 继续学习 考法指导1 测量距离问题分为三种类型 两点间不可达又不可视 两点间可视但不可达 两点都不可达 解决此问题的方法是 选择合适的辅助测量点 构造三角形 将问题转化为求某个三角形的边长问题 从而利用正 余弦定理求解 2 测量高度问题一般涉及方位角 仰角 俯角等 因而所画图形常为立体图形 在画图时 要注意运用空间想象力 解题时要尽可能地寻找其中的直角三角形 利用直角三角形中的特殊关系解决问题 避免复杂的运算 3 与距离问题和高度问题不同 角度问题求解的方向为角 但解决角度问题的关键仍在于将实际问题转化为具体的解三角形问题 即确定所求角 找出三角形中已知的边和角 利用正 余弦定理将这些边 角联系起来求解 数学第四章 第四讲正 余弦定理及解三角形 考法示例6某渔轮在航行中不幸遇险 发出呼救信号 我海军舰艇在a处获悉后 立即测出该渔轮在方位角为45 距离为10nmile的c处 并测得渔轮正沿方位角为105 的方向 以9nmile h的速度向某小岛靠拢 我海军舰艇立即以21nmile h的速度前去营救 求舰艇的航向和靠近渔轮所需的时间 思路分析本题中所涉及的路程在不断变化 但舰艇和渔轮相遇时所用时间相等 先设出所用时间t 找出等量关系 然后解三角形 图4 4 4 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 考法六三角形中的综合问题 继续学习 考法指导高考综合考查三角函数知识 常常以三角形为载体 在三角形中综合考查三角函数的图象与性质 正 余弦定理及解三角形 正 余弦定理 向量等知识 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 继续学习 数学第四章 第四讲正 余弦定理及解三角形 突破攻略 在三角形边角关系相互制约的问题中 基本的解决思路有两种 一是根据正 余弦定理把边的关系都转化为角的关系 通过正 余弦定理及解三角形解决问题 二是根据正 余弦定理把角的关系都转化为边的关系 通过代数变换解决问题 数学第四章 第四讲正 余弦定理及解三角形 返回目录 能力大提升 继续学习 代数式化简或三角运算不当致误 数学第四章 第四讲正 余弦定理及解三角形 示例8在 abc中 若 a2 b2 sin a b a2 b2 sin a b 试判断 abc的形状 易错分析 1 从两个角的正弦值相等直接得到两角相等 忽略两角互补情形 2 代数运算中两边同除以一个可能为0的式子 导致漏解 3 结论表述不规范 解析因为 a2 b2 sin a b a2 b2 sin a b 所以b2 sin a b sin a b a2 sin a b sin a b 所以a2cosasinb b2sinacosb 解法一由正弦定理知a 2rsina b 2rsinb 所以sin2acosasinb sin2bsinacosb 又sina sinb 0 所以sinacosa sinbcosb 所以sin2a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论