



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层训练(四十四)直线与圆、圆与圆的位置关系A组基础达标(建议用时:30分钟)一、选择题1已知点M(a,b)在圆O:x2y21外,则直线axby1与圆O的位置关系是()A相切B相交C相离D不确定B由题意知点在圆外,则a2b21,圆心到直线的距离d0)相交于A,B两点,且AOB120(O为坐标原点),则r_.2如图,过点O作ODAB于点D,则|OD|1.AOB120,OAOB,OBD30,|OB|2|OD|2,即r2.8(2017安徽十校联考)已知圆C:(x2)2y24,直线l:kxy2k0(kR),若直线l与圆C恒有公共点,则实数k的最小值是_. 【导学号:00090285】圆心C(2,0),半径r2.又圆C与直线l恒有公共点所以圆心C(2,0)到直线l的距离dr.因此2,解得k.所以实数k的最小值为.三、解答题9已知点A(1,a),圆x2y24.(1)若过点A的圆的切线只有一条,求a的值及切线方程;(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为2,求a的值解(1)由于过点A的圆的切线只有一条,则点A在圆上,故12a24,a.2分当a时,A(1,),易知所求切线方程为xy40;当a时,A(1,),易知所求切线方程为xy40.5分(2)设过点A的直线方程为xyb,则1ab,即ab1,8分又圆心(0,0)到直线xyb的距离d,224,则b.因此ab11.12分10(2017唐山模拟)已知定点M(0,2),N(2,0),直线l:kxy2k20(k为常数)(1)若点M,N到直线l的距离相等,求实数k的值;(2)对于l上任意一点P,MPN恒为锐角,求实数k的取值范围解(1)点M,N到直线l的距离相等,lMN或l过MN的中点M(0,2),N(2,0),直线MN的斜率kMN1,MN的中点坐标为C(1,1).3分又直线l:kxy2k20过定点D(2,2),当lMN时,kkMN1;当l过MN的中点时,kkCD.综上可知,k的值为1或.6分(2)对于l上任意一点P,MPN恒为锐角,l与以MN为直径的圆相离,即圆心(1,1)到直线l的距离大于半径,10分d,解得k1.12分B组能力提升(建议用时:15分钟)1(2015山东高考)一条光线从点(2,3)射出,经y轴反射后与圆(x3)2(y2)21相切,则反射光线所在直线的斜率为()A或B或C或D或D由已知,得点(2,3)关于y轴的对称点为(2,3),由入射光线与反射光线的对称性,知反射光线一定过点(2,3)设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y3k(x2),即kxy2k30.由反射光线与圆相切,则有d1,解得k或k,故选D2(2017济南质检)过点P(1,)作圆x2y21的两条切线,切点分别为A,B,则_. 【导学号:00090286】如图所示,可知OAAP,OBBP,OP2.又OAOB1,可以求得APBP,APB60.故cos 60.3已知圆C的方程为x2(y4)24,点O是坐标原点,直线l:ykx与圆C交于M,N两点(1)求k的取值范围;(2)直线l能否将圆C分割成弧长的比为的两段弧?若能,求出直线l的方程;若不能,请说明理由解(1)将ykx代入圆C的方程x2(y4)24.得(1k2)x28kx120.2分直线l与圆C交于M,N两点,(8k)2412(1k2)0,得k23,(*)k的取值范围是(,)(,).5分(2)假设直线l将圆C分割成弧长的比为的两段弧,则劣弧所对的圆心角MCN90,由圆C:x2(y4)24知圆心C(0,4),半径r2.8分在RtMCN中,可求弦心距drsin 4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力发展不停步
- 新闻联播中的新质生产力解读
- 新质生产力与新的生产关系
- 情人节的活动策划方案(标准模版)
- 2025年呼吸内科慢性阻塞性肺疾病诊疗方案考核答案及解析
- 2025年心脏病学患者的护理综合测试卷答案及解析
- 2025年呼吸内科重症病例处理演练答案及解析
- 2025年小儿外科手术术前术后护理综合评估试题答案及解析
- 2025年精神科抑郁症患者心理干预策略测试答案及解析
- 新质生产力重点发展领域解析
- DB13(J)-T 8389-2020 被动式超低能耗建筑节能工程施工及质量验收标准
- 海关退运协议书
- 新八德教育工作计划、总结模版
- 月嫂 考试题及答案
- 2025保定市涞源县涞源镇社区工作者考试真题
- 物质安全资料脱模剂MSDS
- 2025年中国过敏性鼻炎市场研究报告
- 房建工程总承包EPC项目技术标(投标方案)(技术标)
- 招生奖励方案市技工学校高考奖励方案
- 阴影透视习题集答案
- 学校捐款协议书范本
评论
0/150
提交评论