高中数学 第三章 概率章末复习课件 新人教B版必修3.ppt_第1页
高中数学 第三章 概率章末复习课件 新人教B版必修3.ppt_第2页
高中数学 第三章 概率章末复习课件 新人教B版必修3.ppt_第3页
高中数学 第三章 概率章末复习课件 新人教B版必修3.ppt_第4页
高中数学 第三章 概率章末复习课件 新人教B版必修3.ppt_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章概率章末复习 知识网络 1 本章涉及的概念比较多 要真正理解它们的实质 搞清它们的区别与联系 了解随机事件发生的不确定性和频率的稳定性 要进一步了解概率的意义以及频率与概率的区别 要点归纳 4 对于几何概型事件概率的计算 关键是求得事件a所占区域和整个区域的几何度量 然后代入公式求解 5 学习本章的过程中 要重视教材的基础作用 重视过程的学习 重视基本数学思想和数学方法的形成和发展 注意培养分析问题和解决问题的能力 要点归纳 题型一随机事件的概率1 有关事件的概念 1 必然事件 我们把在条件s下 一定会发生的事件 叫做相对于条件s的必然事件 简称必然事件 2 不可能事件 在条件s下 一定不会发生的事件 叫做相对于条件s的不可能事件 简称不可能事件 3 确定事件 必然事件与不可能事件统称为相对于条件s的确定事件 简称确定事件 题型研修 4 随机事件 在条件s下可能发生也可能不发生的事件 叫做相对于条件s的随机事件 简称随机事件 5 事件的表示方法 确定事件和随机事件一般用大写字母a b c 表示 2 对于概率的定义应注意以下几点 1 求一个事件的概率的基本方法是通过大量的重复试验 2 只有当频率在某个常数附近摆动时 这个常数才叫做事件a的概率 3 概率是频率的稳定值 而频率是概率的近似值 题型研修 4 概率反映了随机事件发生的可能性的大小 5 必然事件的概率为1 不可能事件的概率为0 故0 p a 1 例1对一批u盘进行抽检 结果如下表 题型研修 1 计算表中次品的频率 2 从这批u盘中任抽一个是次品的概率约是多少 3 为保证买到次品的顾客能够及时更换 要销售2000个u盘 至少需进货多少个u盘 题型研修 解 1 表中次品频率从左到右依次为0 06 0 04 0 025 0 017 0 02 0 018 2 当抽取件数a越来越大时 出现次品的频率在0 02附近摆动 所以从这批u盘中任抽一个是次品的概率约是0 02 3 设需要进货x个u盘 为保证其中有2000个正品u盘 则x 1 0 02 2000 因为x是正整数 所以x 2041 即至少需进货2041个u盘 题型研修 跟踪演练1某射击运动员为备战奥运会 在相同条件下进行射击训练 结果如下 题型研修 1 该射击运动员射击一次 击中靶心的概率大约是多少 2 假设该射击运动员射击了300次 则击中靶心的次数大约是多少 3 假如该射击运动员射击了300次 前270次都击中靶心 那么后30次一定都击不中靶心吗 4 假如该射击运动员射击了10次 前9次中有8次击中靶心 那么第10次一定击中靶心吗 题型研修 解 1 由题意 击中靶心的频率与0 9接近 故概率约为0 9 2 击中靶心的次数大约为300 0 9 270 次 3 由概率的意义 可知概率是个常数 不因试验次数的变化而变化 后30次中 每次击中靶心的概率仍是0 9 所以不一定击中靶心 4 不一定 题型研修 题型二互斥事件与对立事件1 互斥事件与对立事件的概念的理解 1 互斥事件是不可能同时发生的两个事件 对立事件除要求这两个事件不同时发生外 还要求二者必须有一个发生 因此对立事件一定是互斥事件 但互斥事件不一定是对立事件 对立事件是互斥事件的特殊情况 2 利用集合的观点来看 如果事件a b 则两事件是互斥的 此时a b的概率就可用加法公式来求 即为p a b p a p b 如果事件a b 则可考虑利用古典概型的定义来解决 不能直接利用概率加法公式 题型研修 3 利用集合的观点来看 如果事件a b a b u 则两事件是对立的 此时a b就是必然事件 可由p a b p a p b 1来求解p a 或p b 2 互斥事件概率的求法 1 若a1 a2 an互斥 则p a1 a2 an p a1 p a2 p an 题型研修 2 利用这一公式求概率的步骤是 要确定这一些事件彼此互斥 这一些事件中有一个发生 先求出这一些事件分别发生的概率 再求和 值得注意的是 两点是公式的使用条件 不符合这两点 是不能运用互斥事件的概率加法公式的 题型研修 4 互斥事件的概率加法公式是解决概率问题的重要公式 它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解 题型研修 例2现有8名2012伦敦奥运会志愿者 其中志愿者a1 a2 a3通晓日语 b1 b2 b3通晓俄语 c1 c2通晓韩语 从中选出通晓日语 俄语和韩语的志愿者各1名 组成一个小组 1 求a1被选中的概率 2 求b1和c1不全被选中的概率 题型研修 解 1 从8人中选出日语 俄语和韩语的志愿者各1名 其一切可能的结果组成的基本事件空间 a1 b1 c1 a1 b1 c2 a1 b2 c1 a1 b2 c2 a1 b3 c1 a1 b3 c2 a2 b1 c1 a2 b1 c2 a2 b2 c1 a2 b2 c2 a2 b3 c1 a2 b3 c2 a3 b1 c1 a3 b1 c2 a3 b2 c1 a3 b2 c2 a3 b3 c1 a3 b3 c2 即由18个基本事件组成 由于每一个基本事件被抽取的机会均等 因此这些基本事件的发生是等可能的 题型研修 题型研修 跟踪演练2甲 乙两人参加普法知识竞赛 共有5个不同题目 选择题3个 判断题2个 甲 乙两人各抽一题 1 甲 乙两人中有一个抽到选择题 另一个抽到判断题的概率是多少 2 甲 乙两人中至少有一人抽到选择题的概率是多少 解把3个选择题记为x1 x2 x3 2个判断题记为p1 p2 甲抽到选择题 乙抽到判断题 的情况有 x1 p1 x1 p2 x2 p1 x2 p2 x3 p1 x2 p2 共6种 题型研修 甲抽到判断题 乙抽到选择题 的情况有 p1 x1 p1 x2 p1 x3 p2 x1 p2 x2 p2 x3 共6种 甲 乙都抽到选择题 的情况有 x1 x2 x1 x3 x2 x1 x2 x3 x3 x1 x3 x2 共6种 甲 乙都抽到判断题 的情况有 p1 p2 p2 p1 共2种 因此 基本事件的总数为6 6 6 2 20 种 题型研修 题型研修 题型研修 几何概型同古典概型一样 是概率中最具有代表性的试验概型之一 在高考命题中占有非常重要的位置 我们要理解并掌握几何概型试验的两个基本特征 即 每次试验中基本事件的无限性和每个事件发生的等可能性 并能求简单的几何概型试验的概率 题型研修 例3 2013 天津高考 某产品的三个质量指标分别为x y z用综合指标s x y z评价该产品的等级 若s 4 则该产品为一等品 现从一批该产品中 随机抽取10件产品作为样本 其质量指标列表如下 1 利用上表提供的样本数据估计该批产品的一等品率 2 在该样本的一等品中 随机抽取2件产品 用产品编号列出所有可能的结果 设事件b为 在取出的2件产品中 每件产品的综合指标s都等于4 求事件b发生的概率 解 1 计算10件产品的综合指标s 如下表 2 在该样本的一等品中 随机抽取2件产品的所有可能结果为 a1 a2 a1 a4 a1 a5 a1 a7 a1 a9 a2 a4 a2 a5 a2 a7 a2 a9 a4 a5 a4 a7 a4 a9 a5 a7 a5 a9 a7 a9 共15种 答案c 题型四分类讨论思想数形结合思想的实质就是把抽象的数学语言 数量关系和直观的图形结合起来 包含 以形助数 和 以数辅形 两个方面 在本节中把几何概型问题利用坐标系转化成图形问题 或符合条件的点集问题 去解决 例4甲 乙两人约定在6时到7时之间在某处会面 并约定先到者应等候另一个人一刻钟 过时即可离去 求两人能会面的概率 跟踪演练4三个人玩传球游戏 每个人都等可能地传给另两人 不自传 若从a发球算起 经4次传球又回到a手中的概率是多少 小结事件个数没有很明显的规律 而且涉及的基本事件又不是太多时 我们可借助树状图法直观地将其表示出来 有利于条理地思考和表达 1 两个事件互斥 它们未必对立 反之 两个事件对立 它们一定互斥 若事件a1 a2 a3 an彼此互斥 则p a1 a2 an p a1 p a2 p an 2 关于古典概型 必须要解决好下面三个方面的问题 1 本试验是否是等可能的 2 本试验的基本事件有多少个 3 事件a是什么 它包含多少个基本事件 只有回答好了这三方面的问题 解题才不会出错 3 几何概型的试验中 事件a的概率p a 只与子区域a的几何度量 长度 面积或体积 成正比 而与a的位置和形状无关 求试验为几何概型的概率 关键是求得事件所占区域和整个区域 的几何度量 然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论