(教案1)12排列与组合.doc_第1页
(教案1)12排列与组合.doc_第2页
(教案1)12排列与组合.doc_第3页
(教案1)12排列与组合.doc_第4页
(教案1)12排列与组合.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

彰显数学魅力!演绎网站传奇!1.2.1 排列 学习目标1正确理解排列的意义2掌握写出所有排列的方法,加深对分类讨论方法的理解3发展学生的抽象能力和逻辑思维能力学习重点与难点重点:正确理解两个原理(加法原理、乘法原理)以及排列的概念难点:区别排列教学过程设计师:上节课我们学习了两个基本原理,请大家完成以下两题的练习:1书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书(1)从中任取1本,有多少种取法?(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?2某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?4分钟后,找一同学谈解答和怎样思考的?生:第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法根据加法原理,得到不同的取法种数是50+40=90第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 5040=2000第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区所以共需35=15个实验小区师:学习了两个基本原理之后,继续学习排列和组合,什么是排列?什么是组合?这两个问题有什么区别和联系?这是我们讨论的重点先从实例入手:1北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?希望同学们设计好方案,踊跃发言甲:首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票师:生甲用加法原理解决了准备多少种飞机票问题能不能用乘法原理来设计方案呢?乙:首先确定起点站,在三个站中,任选一个站为起点站,有3种方法即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有32=6种师:根据生乙的分析写出所有种飞机票丙:(板演)师:再看一个实例在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?请同学们谈谈自己想法生丁:事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法剩下那面旗子,放在最低位置根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:321=6(种)师:根据生丁同学的分析,写出三面旗子同时升起表示信号的所有情况(包括每个位置情况)生戊:(板演)师:第三个实例,请全体同学都参加设计,把所有情况(包括每个位置情况)写出来由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数(教师在教室巡视,过3分钟找一同学板演)根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有432=24(个)师:请板演同学谈谈怎样想的?生:第一步,先确定百位上的数字在1,2,3,4这四个数字中任取一个,有4种取法第二步,确定十位上的数字当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法第三步,确定个位上的数字当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法根据乘法原理,所以共有432=24种师:以上我们讨论了三个实例,这三个问题有什么共同的地方?生:都是从一些研究的对象之中取出某些研究的对象师:取出的这些研究对象又做些什么?生:实质上按着顺序排成一排,交换不同的位置就是不同的情况师:请大家看书,第页、第行 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法第三个问题呢?生:从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法师:请看课本,第页,第行一般地说,从n个不同的元素中,任取m(mn)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?生:从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同两个条件中,只要有一个条件不符合,就是不同的排列如第一个问题中,北京广州,上海广州是两个排列,第三个问题中,213与423也是两个排列再如第一个问题中,北京广州,广州北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列师:还需要搞清楚一个问题,“一个排列”是不是一个数?生:“一个排列”不应当是一个数,而应当指一件具体的事如飞机票“北京广州”是一个排列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论