矩形的性质与判定的综合运用.doc_第1页
矩形的性质与判定的综合运用.doc_第2页
矩形的性质与判定的综合运用.doc_第3页
矩形的性质与判定的综合运用.doc_第4页
矩形的性质与判定的综合运用.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 特殊平行四边形2矩形的性质与判定(三)山西省东街逸夫学校 吕福平一、学情分析学生在八年级已经学习了平行四边形的性质和判定,本学期也学习了一种特殊的平行四边形菱形的性质和判定;本节前两课时,学生学习了矩形的性质与判定;本课时在前面学习的基础上进行矩形知识的综合应用。在前面相关知识的学习中,学生已经经历了大量的证明活动,特别是平行四边形的相关证明推理,学生已经逐渐体会到了证明的必要性和证明在解决实际问题时的作用,同时,在前面的相关活动中,学生已经初步了解了归纳、概括及转化等数学思想方法,大量的活动经验丰富了学生的数学思想,锻炼了学生的能力,使学生具备了在解题中合理运用方法的能力。二 、教学目标:知识与技能:知识目标:能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;提高实际动手操作能力。能力目标:经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用; 过程与方法:通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。情感态度价值观:通过课堂的自主探究活动,让学生感受合作学习的成功,培养主动探求、勇于实践的精神,激发学生学习数学的激情,树立学好数学的信心。三、教学过程第一环节复习导入1.如图1,矩形ABCD的两条对角线相交于点O,已知AOD= 120,AB=2.5cm,则DAO= ,AC= cm,_。2. 如图2,四边形ABCD是平行四边形,添加一个条件 ,可使它成为矩形。目的:1、 通过两道题目复习矩形的性质和判定,复习旧知识为本节课的进行热身。2、 学生回答解题时使用的方法,进一步为本节课的开展做铺垫。第二环 讲授新课例3 如图1-14,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AEBD,垂足为E,ED=3BE.求AE的长.解 四边形ABCD是矩形,AO=BO=DO=BD(矩形的对角线相等且互相平分).BAD=90(矩形的四个都是直角).ED=3BE,BE=OE.又 AEBD,AB=AO.AB=AO=BO.即 ABO是等边三角形.ABO=60.ADB=90-ABO=30.在RtAED中,ADB=30,AE=AD=6=3.方法和目的:这里的证明首先可以让学生对矩形的性质和判定有更深刻的认知,同时,通过教师引导和独立思考,培养遇到题目时冷静思考,找到解题思路的良好习惯。在分析思路时,逐步锻炼学生的推理论证能力,最后通过互查的形式让每个学生都能严格的证明,培养严谨的作风。通过小组合作,在合作中让学生相互帮助共同进步。注意事项:九年级的学生在知识的掌握和思维上有一定的差异,教师可以通过分组合作的形式完成本题的求解;本题的解法不是唯一的,采取小组合作时,应当鼓励学生提出自己的意见,特别是有没有更多的方法来证明这些定理,在小组讨论形成结果的时候,由代表为其他同学进行讲解,并把自己组所有想到的方法向大家展示。此时,教师应该关注学生的思路是否清晰、证明是否严谨,对学有余力的学生要关注他们是否有新的想法,对学困生则要关注他们是否掌握了基本的证明思路。这样不仅有利于学生的合作交流,同时还能合理安排课堂时间,让学生把精力投入到对思想方法的研究上去。例4 如图1-15,在ABC中,AB=AC,AD为BAC的平分线,AN为ABC外角CAM的平分线,CEAN,垂足为E.求证:四边形ADCE是矩形.证明:AD平分BAC,AN平分CAM,CAD=BAC,CAN=CAM.DAE=CAD+CAN =(BAC=CAM) =180 =90.在ABC中,AB=AC,AD为BAC的平分线,ADBC.ADC=90.又CEAN,CEA=90 .四边形ADCE为矩形(有三个角是直角的四边形是矩形).注意事项:本题在解决上一题的基础上,运用已有知识解决问题,进一步发展学生的推理能力,通过证明,让学生体会转化的数学思想。在例题4的证明中,通过让学生找寻不同的解题方法,培养学生的分析能力,深刻体会数学思想的多样性和灵活性。在一题多解的过程中,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力。第三环节巩固提高 在例题4中,若连接DE,交AC于点F(如图1-16)(1) 试判断四边形ABDE的形状,并证明你的结论.(2) 线段DF与AB有怎样的关系?请证明你的结论.注意事项:本题的综合性比较强,对于不同层次的学生,本题的考虑方法也会有区别,教师都应该鼓励学生大胆尝试,用自己的方法去试着解决。练习:已知:如图,四边形ABCD是由两个全等的等边三角形ABD和CBD组成,M、N分别是BC和AD的中点.求证:四边形BMDN是矩形.注意事项:在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。第四环节课堂小结:1、 说说你的收获。2、 说说你的困惑。3、 说说你的方法。总结内容:学生互相交流矩形的性质与判定定理,何时该选用性质定理,何时选择判定定理,矩形与平行四边形的关系,遇到矩形实际题目时如何分析思路,以及遇到困难时如何克服等。注意事项:鼓励学生互相补充,畅所欲言,不要由老师替学生总结,特别要关注一些在数学学习中有困难的学生,要通过这个环节来给他们树立信心,同时帮助他们发现困难以便今后更好的解决困难。第五环节布置作业对于不同层次的学生,要注意提出不同的要求,作业(一)要求不高,要求学生独立完成,对于有能力的同学,可以提出更高的要求作业(二)(一)习题1.6 知识技能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论