免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Empirical Exercises1By Yanan Zhang, 142106901018. The dataset TeachingRatings.xls contains data on course evaluations, course characteristics, and professor characteristics for 463 courses at the UT Austin. Please read the detailed description given in TeachingRatings Description.pdf. You will investigate how course evaluations are related to the professors beauty.(a) Draw a scatterplot of average course evaluations (Course_eval) on the professors beauty. Any relationship between two variables?(b) Run a regression of Course_eval on Beauty. Interpret the estimated parameters?(c) Suppose Prof. Wooldridge has an average value of Beauty, while Prof. Zhus value of Beauty is one standard deviation below the average. Predict Prof. Wooldridges and Prof. Zhus course evaluation.(d) Does Beauty explain a large fraction of the variation in evaluation across courses? Explain.Coding as follows:x=xlsread(TeachingRatings,E2:E464);y=xlsread(TeachingRatings,F2:F464);x_mean=mean(x);y_mean=mean(y);x_std=std(x);y_std=std(y);scatter(x,y);p=polyfit(x,y,1);x1=ones(463,1),x;b,bint,r,rint,stats=regress(y,x1);b) So 1=3.9983, 0=0.1330, course_eval=0.1330+3.9983beauty.The regression result indicates that beauty has a positive influence on course_eval and when beauty increase 1 unit, course_eval is expected to increase 3.9983 units.c)Prof. Wooldridge: beauty=6.2635e(-8), course_eval =0.1414Prof. Zhu: beauty=6.2635e(-8)-0.7886, course_eval = -3.0117d)because of R2=0.0357, the goodness of fit is low. Beauty cant explain course evaluation well.9. Use the dataset CHARITY.xls (with a description file charity.txt) to answer the following questions:(a) What is the average gift in the sample of 4268 people? What is the percentage of people gave no gifts?(b) What is the average mailings per year? What are the minimum and maximum values?(c) Estimate the model gift =0 +1mailsyear +u by OLS and report results, including the sample size and R2.(d) Interpret the slope coefficient. If each mailing costs one guilder, is the charity expected to make a net gain on each mailing? Does this mean the charity makes a net gain on every mailing? Explain.(e) What is the smallest predicted charitable contribution in the sample? Using this simple regression analysis, can you ever predict zero for gift?a)The smallest predicted charitable contribution in the sample is zero. Using this simple regression analysis, I cant predict zero for gift for both1 and 00.gift=xlsread(CHARITY,B2:B4269);mean_gift=mean(gift)mean_gift =7.4445gift=xlsread(CHARITY,B2:B4269);count=0;length=4268;for i=1:length if(gift(i)=0) count=count+1; endendcountratio=1-count/numel(gift)ratio=0.4b)mailsyear=xlsread(CHARITY,F2:F4269);mailsyear_mean=mean(mailsyear);mailsyear_max=max(mailsyear);mailsyear_min=min(mailsyear);so the average mailings per year equals to 2.0496. The minimum value is 0.25 and the maximum is 3.5.c)y=xlsread(CHARITY,B2:B4269);x=xlsread(CHARITY,F2:F4269);x_mean=mean(x);y_mean=mean(y);x_std=std(x);y_std=std(y);scatter(x,y);p=polyfit(x,y,1);x1=ones(4268,1),x;b,bint,r,rint,stats=regress(y,x1);gift=2.6495+2.0141mailsyear.R2=0.0138Sample size=4238d)The charity is expected to make a net gain on each mailing because 10. However, this doesnt mean the charity makes a net gain on every mailing because 1mailsyear just represents the expectation of gift.e)The smallest predicted charitable contribution in the sample is 0. Using this simple regression analysis, you cant predict zero for gift.10. Something real. Collect the financial information from the annual reports of selected public firms. Clearly state your data source and be prepared for peer validation.(a) Pick all listed companies whose headquarters are in the province that your personal identification card is designated to.(b) Collect the annual reports in the year that you entered into your undergraduate college.(c) Tabulate the cross sectional descriptive statistics of the following financial variables:_ Total Assets_ Total Liability_ Earnings Per Share_ Return on Asset_ Return on Equity(d) Based on the information from the same annual report, you may speculate, hypothesize, or simply guess another THREE variables or ratios (not necessarily financial ones) that, you believe, are the best indicators to explain the stocks performance in the next calendar year. Briefly explain your logic. Please also tabulate their cross sectional summary statistics.totalassettotalliabilityEPSROEROAcurrentratioebitda_incomeEPSYOYnetprofit_salesmean6341.62353533.0680.55625915.924969.7328471.66433716.4831572.454548.926446var153304895491841080.237853310.295750.816831.994646171.2989126285.571.27814std12276.2586953.4510.48355117.465297.0679221.40029912.97673352.34238.370785mode7116.16424369.9740.787816.12436.37591.31616.53798.18463.9685median2375.53621173.3410.451613.58418.21761.292613.8913645.9141max70395.36142396.62.37127.380942.53718.512382.2612125040.8472min412.476145.5022-0.43-19.428-6.32390.2386-6.8843-2250-14.993211. Simulation I: There are two normally distributed random variables x1N(0, 1) and x2N(0, 1.5). Write program codes to draw two random sequences数列 from the two random variables with 200 observations each. Define y = 1/2 (x1 + x2).(d) Please submit the codes that generate the above results and prepare for the cross-validation交叉验证 from your peers.a)x1=normrnd(0,1,1,200);x2=normrnd(0,1.5,1,200);y=(x1+x2)*0.5;var1=var(x1);var2=var(x2);var3=var(y);(var1+var2)/4=0.860175, closed to var(y)b)varof3 = ;for i=1:100x1= normrnd(0,1,1,200);x2= normrnd(0,1.5,1,200);y= (x1+x2)*0.5;varonce=var(x1) var(x2) var(y);varof3 =varof3; matrix;endmeanvar1=mean(varof3(1:100,1)meanvar2=mean(va
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 20795-2025植物油脂烟点测定
- GB/T 21151-2025煤矿用轴流主通风机技术规范
- 2025-2026学年北京版(新教材)二年级上册数学第三单元强化训练试卷(附参考答案)
- 第四届急诊急救护理专科护士培训班试题
- 职业性急性硫化氢中毒的护理
- 守护青春防线-初一防性侵主题班会教案
- 盐亭县2025年下半年公开考核招聘高中教师历年真题汇编附答案解析
- 2026年资料员之资料员专业管理实务考试题库200道及参考答案一套
- 2026年房地产经纪协理之房地产经纪操作实务考试题库及参考答案【b卷】
- 2025北京丰台教委第二批人才引进(含博士后出站人员)招聘工作人员23人历年真题汇编带答案解析
- 自愿赠与现金合同范本
- 合同能源管理优惠政策解析
- 第四单元《采用合理的论证方法》课件2025-2026学年统编版高中语文选择性必修上册
- 2025年攀枝花市米易县事业单位秋季引才考核工作笔试考试参考试题附答案解析
- 甘肃开放大学2025年《地域文化(本)》形成性考核1-3终考答案
- 畜牧兽医专业职业规划
- 2026年河南女子职业学院单招职业技能考试必刷测试卷带答案
- 团干部培训分享
- TCQFX001-2024四川省机动车维修工时定额标准
- 数字化艺术-终结性考核-国开(SC)-参考资料
- T/TMAC 041.F-2022科技服务机构星级评价规范
评论
0/150
提交评论