吉林省东北师范大学附属中学2015高中数学总复习(3)文(含解析)新人教版必修.doc_第1页
吉林省东北师范大学附属中学2015高中数学总复习(3)文(含解析)新人教版必修.doc_第2页
吉林省东北师范大学附属中学2015高中数学总复习(3)文(含解析)新人教版必修.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省东北师范大学附属中学2015高中数学总复习(3)文(含解析)新人教版必修53.设等差数列的首项及公差d都为整数,前n项和为(1)若,求数列的通项公式;(2)若,求所有可能的数列的通项公式【解析】:(1)由,即,解得因此,的通项公式是;(2)由,得,即由+,得,即由+,得,即所以又,故将代入、,得又,故或所以,数列的通项公式是或品:利用等差(比)数列的定义构造方程(组)或不等式(组)是常用的解题方法4.设数列满足,证明为等差数列的充要条件是为等差数列且【解析】:必要性:设是公差为的等差数列,则易知成立由递推关系(常数)(n=1,2,3,)所以数列为等差数列充分性:设数列是公差为的等差数列,且,由,得,从而有,得,由得,由此不妨设, 则(常数)由此从而,两式相减得因此(常数)(n=1,2,3,),即数列为等差数列品:利用递推关系式是解决数列问题的重要方法,要熟练掌握等差数列的定义、通项公式5.已知数列满足(1)求数列的通项公式;(2)若,证明是等差数列【解析】:(1),是以为首项,2为公比的等比数列,即;(2),利用的通项公式,有构建递推关系,得,从而有,得,即故是等差数列方法:由递推式求数列的通项,常常构造新的辅助数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论