




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市五校2020届高三12月月考数 学(理)一、填空题(本大题共14小题,每小题5分,共计70分请把答案填写在答题卡相应位置上)1.已知,则 2.若复数,则复数的模= 3.某市有中外合资企业160家,私营企业320家,国有企业240家,其他性质的企业80家,为了了解企业的管理情况,现用分层抽样的方法从这800家企业中抽取一个容量为的样本,已知从国有企业中抽取了12家,那么= 4.函数的定义域是 5.如右图所示的流程图的运行结果是 6.高三(5)班演讲兴趣小组有女生3人,男生2人,现从中任选2 名学生去参加校演讲比赛 ,则参赛学生恰好为1名男生和1名女生的概率是 7.在平面直角坐标系中,直线为双曲线 的一条渐近线,则该双曲线的离心率为 8.已知,则的值为 9.设公比不为1的等比数列满足,且成等差数列,则数列的前4项和为 10.曲线在点处的切线与直线互相垂直,则实数的值为 11. 已知,且,则的最小值为 12.已知直线与圆心为C的圆相交于A,B两点,且ABC为等边三角形,则实数 13.已知平面向量,满足,的夹角等于,且,则的取值范围是 14.关于的方程有3个不同的实数解,则实数的取值范围为 二、解答题:(本大题共6小题,共90分解答应写出文字说明,证明过程或演算步骤)15. (本小题满分14分)在三角形中,角所对的边分别为,若,角为钝角,(1)求的值;(2)求边的长16. (本小题满分14分)如图所示,在三棱柱中, 为正方形,是菱形,平面平面(1)求证:平面;(2)求证:;17(本小题满分14分)已知椭圆E:的离心率为,且过点右焦点为F(1)求椭圆E的方程;(2)设过右焦点为F的直线与椭圆交于 AB两点,且,求直线AB的方程18(本小题满分16分)如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10和20,从建筑物的顶部看建筑物的视角(1)求的长度;(2)在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?19. (本小题满分16分)已知数列、满足:.(1)证明:是等差数列,并求数列的通项公式;(2)设,求实数a为何值时恒成立20. (本小题满分16分)已知函数(1)若曲线在点处的切线方程为,求的值;(2)当时,求证:;(3)设函数,其中为实常数,试讨论函数的零点个数,并证明你的结论数 学(正卷)一、填空题(本大题共14小题,每小题5分,共计70分)1. 2. 3.40 4. 5.12 6. 7. 8. 9. 10. 11. 12. 13. 14.二、解答题:(本大题共6小题,共90分)15.解:(1)因为角为钝角,所以,2分又,所以,且, 4分所以6分 8分(2)因为,且,所以,10分又,12分则,所以 14分16.证明:在菱形中,. 2分因为 平面,平面,所以 平面 6分(2)连接在正方形中, 因为 平面平面,平面平面,平面,所以 平面 8分因为 平面, 所以 10分在菱形中,因为 平面,平面,所以 平面 12分 因为 平面, 所以 14分 17(1)解:因为,所以,b=c, 2分设椭圆E的方程为将点P的坐标代入得:,4分所以,椭圆E的方程为 6分(2)因为右焦点为F(1,0),设直线AB的方程为:,代入椭圆中并化简得:, 8分设,因为,所以,即, 10分所以,即,解得,所以,12分所以直线AB的方程为:或 14分18解:(1)作,垂足为,则,设,则,2分化简得,解之得,或(舍)6分答:的长度为 8分(2)设,则,10分设,令,因为,得,12分当时,是减函数;当时,是增函数,所以,当时,取得最小值,即取得最小值,14分因为恒成立,所以,所以,因为在上是增函数,所以当时,取得最小值答:当为时,取得最小值16分19.解:(1),2分 数列是以4为首项,1为公差的等差数列4分 , 6分(2) 8分10分 12分由条件可知恒成立即可满足条件,设,当时,恒成立, 13分当时,由二次函数的性质知不可能成立14分当时,对称轴,f(n)在为单调递减函数 ,a1时恒成立 15分综上知:时,恒成立 16分20(1)解: 2分所以过点的切线方程为,所以,解得或 4分(2)证明:即证,因为,所以即证,设,则令,解得 6分减极小增所以 当时,取得最小值 8分 所以当时, 9分(3)解:等价于,等价于,且10分令,则令,得或,11分减极小增极大减 12分(I)当时, ,所以无零点,即F(x)定义域内无零点13分(II)当即时,若,因为,所以在只有一个零点,而当时,所以F(x) 只有一个零点;14分()当即时,由(II)知在只有一个零点,且当时,所以F(x)恰好有两个零点; 15分()当即时,由(II)、()知在只有一个零点,在只有一个零点,在时,因为,只要比较与的大小,即只要比较与的大小,令,因为,因为,所以,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行湘潭市湘潭县2025秋招笔试性格测试题专练及答案
- 农发行石家庄市鹿泉区2025秋招数据分析师笔试题及答案
- 农发行娄底市娄星区2025秋招笔试英文行测高频题含答案
- 农发行怀化市鹤城区2025秋招半结构化面试题库及参考答案
- 驾照法律题考试题库及答案
- 2025年化学高考试卷全套及答案
- 2025年施工管理口诀题库及答案
- 2025年抗菌药物管理培训考核试题(附答案)
- 2025年(CPA)注册会计师《税法》近年真题汇编(含答案)
- 2025年煤炭生产经营单位(安全生产管理人员)证考试题库及煤炭生产经营单
- 快乐读书吧:《从前有座山》(教学设计)2023-2024学年统编版语文五年级下册
- 张燕芳《国际贸易实务》(第5版)-参考答案示例-已认证老师可下载
- DL∕T 1100.1-2018 电力系统的时间同步系统 第1部分:技术规范
- (正式版)JB∕T 14666-2024 钢质汽车转向节臂锻件 工艺规范
- CJ/T 158-2002 城市污水处理厂管道和设备色标
- 五年级上英语教案-Unit1 Lesson 4 What Do They Like to Do-冀教版
- (高清版)JTG 3810-2017 公路工程建设项目造价文件管理导则
- 热稳定校验(YJV铜缆)-李良胜
- 广东省深圳实验中学2023-2024学年高二上学期期中数学模拟试题
- DB11∕T 583-2022 扣件式和碗扣式钢管脚手架安全选用技术规程
- 食材配送服务质量保证方案
评论
0/150
提交评论