




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等腰三角形教案教学目的1经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力;2掌握等腰三角形的性质及其两个推论;3运用等腰三角形的性质及其推论进行有关证明和计算;4使学生掌握等腰三角形的判定定理及其推论;5掌握等腰三角形判定定理的运用;6通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力教学重点等腰三角形的性质定理及其证明;等腰三角形的判定定理教学难点“三线合一”的理解;对等腰三角形性质的应用;性质与判定的区别教学方法直观教学发现法和启发诱导教学法,与学生实践操作、合作探究教学过程【一】一、创设情景,引入新知活动1:请同学们把一张长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形?教师示范操作,然后学生跟着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,板书:等腰三角形师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想学生思考并发表自已的看法,教师提出本节课所要解决的问题师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴(板书)教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴二、交流,探索新知活动2:教师出示刚才剪下的等腰三角形纸片,标上字母如图所示:把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图图形,ADB与ADC有什么关系?图中哪些线段或角相等?AD与BC垂直吗?为什么?学生回答:ADB与ADC重合,B=C,BAD=CAD,ADB=CDA,BD=CD活动3:由上面的性质我们可以得到等腰三角形如下性质:性质1:等腰三角形的两个底角相等,简称:等边对等角(板书)教师提问:这个命题的题设是什么?结论是什么?学生可结合图形回答(板书)已知:在ABC中,AB=AC求证:B=C说明:将等腰三角形写成已知时,通常写成“在ABC中,AB=AC”而不写成“等腰”两个字教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正同学们思考一下,还有没有其它辅助线的作法,教师可作提示:作中线AD,由学生口答,或者指导学生看课本证明教师归纳等腰三角形性质1,并指出它的几何符号语言的书写:如上图: AB=AC(已知)B=C(等边对等角)教师提出问题:(口答)1、等腰直角三角形每一个锐角的度数是多少度?2、如果等腰三角形的底角等于40,那么它的顶角的度数是多少?3、如果等腰三角形的顶角是40,那么它的底角的度数是多少?4、如果等腰三角形的一个角是40,那么其它的两个角各是多少度?5、如果等腰三角形的一个内角是120,则其它的两个角各是多少度?6、如果等腰三角形的一个内角是60,则其它的两个角各是多少度?要求学生完成教师提出的问题,教师归纳:(1)等腰三角形中顶角与底角的关系:顶角十2底角=180(2)三条边都相等的三角形是等边三角形;等边三角形三个内角相等,每一个内角都等于60(板书)教师与学生合作分析,参看书本上的证明过程活动4:提出问题:从性质1的证明过程可以知道,BD=CD,ADB=ADC=90,由此,你能得出等腰三角形还具有什么性质?让学生运用数学语言表述所发现的规律,师生共同归纳得出:性质2:等腰三角形的顶角的平分线垂直平分底边(板书)即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相重合三线合一(板书)活动5:教师举例子如图在ABC中,AB=AC,BAC=120,点D、E是底边的两点,且BD=AD,CE=AE,求DAE的度数ABCDE如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:A和C的度数根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180,就可求出ABC的三个内角如果我们在解的过程中把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷解:因为AB=AC,BD=BC=AD,所以ABC=C=BDCA=ABD(等边对等角)设A=x,则BDC=A+ABD=2x,从而ABC=C=BDC=2x于是在ABC中,有A+ABC+C=x+2x+2x=180,解得x=36在ABC中,A=35,ABC=C=72三、强化练习,巩固新知如图,在ABC中,AB=ACACBD(1)ADBD,_ = _; _ = _(等腰三角形底边上的高与_、_重合)(2)AD是中线_ _;_= _(等腰三角形底边上的中线与_、_重合)(3)AD是角平分线_ _;_= _(等腰三角形顶角的平分线与_、_重合)四、师生互动,总结新知请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等边三角形性质;4、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)【二】1、复习导入等腰三角形的性质定理的内容是什么?反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法已知:如图,ABC中,B=C求证;AB=AC教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起再让学生回想等腰三角形中常添的辅助线,学生可找出作BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系2、推论1:三个角都相等的三角形是等边三角形推论2:有一个角等于60的等腰三角形是等边三角形要让学生自己推证这两条推论小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理证明三角形是等边三角形的方法:等边三角形定义;推论1;推论23、应用举例求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性它与相邻的内角互补;它等于与它不相邻的两个内角的和要证AB=AC,可先证明B=C,因为已知1=2,所以可以设法找出B、C与1、2的关系已知:CAE是ABC的外角,1=2,ADBC求证:AB=AC证明:(略)由学生板演即可补充:已知,在中,的平分线与的外角平分线交于D,过D作DE/BC交AC与F,交AB于E,求证:EF=BE-CF分析:对于三个线段间关系,尽量转化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州国企招聘:2025贵州省水利投资(集团)有限责任公司招聘84人考前自测高频考点模拟试题及完整答案详解1套
- 2025年工业互联网平台生物识别技术在智能医疗健康技术进步中的应用报告
- 2025年工业互联网平台增强现实交互技术在智能工厂生产信息化中的应用分析报告
- 2025年成人教育线上学习模式创新成人教育课程设计与开发实践策略实践报告
- 2025年美妆个性化定制服务模式与美容护肤行业品牌竞争力提升报告
- 2025版汽车维修行业环保设施投资与运营合同
- 2025年个人出租房出售合同范本
- 2025年度物流行业劳动合同编制与管理规范
- 2025年二手房买卖合同签订中的合同解除与违约责任承担
- 2025年专业厨师个人品牌推广与服务合同
- 学校食堂病媒生物防制工作计划
- 护理业务查房与护理教学查房的区别
- 资产评估工作的方案(5篇)
- 中国工分制管理制度
- 2025-2030年中国城市轨道交通行业市场现状供需分析及投资评估规划分析研究报告
- 乌镇景区管理制度
- 国企职称评聘管理制度
- 公司意识形态管理制度
- 微电网短期负荷预测-洞察阐释
- 月饼代销合同协议书
- 精神康复与躯体管理训练体系
评论
0/150
提交评论