2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析.doc_第1页
2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析.doc_第2页
2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析.doc_第3页
2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析.doc_第4页
2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析.doc_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2019年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析编 辑:_时 间:_图形的相似与位似一、选择题1 (2018山东枣庄3分)如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F若AC=3,AB=5,则CE的长为()ABCD【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【解答】解:过点F作FGAB于点G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,=,AC=3,AB=5,ACB=90,BC=4,=,FC=FG,=,解得:FC=,即CE的长为故选:A【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE2 (2018山东滨州3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A(5,1)B(4,3)C(3,4)D(1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标【解答】解:以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又A(6,8),端点C的坐标为(3,4)故选:C【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键3 (2018江苏扬州3分)如图,点A在线段BD上,在BD的同侧做等腰RtABC和等腰RtADE,CD与BE、AE分别交于点P,M对于下列结论:BAECAD;MPMD=MAME;2CB2=CPCM其中正确的是()ABCD【分析】(1)由等腰RtABC和等腰RtADE三边份数关系可证;(2)通过等积式倒推可知,证明PAMEMD即可;(3)2CB2转化为AC2,证明ACPMCA,问题可证【解答】解:由已知:AC=AB,AD=AEBAC=EADBAE=CADBAECAD所以正确BAECADBEA=CDAPME=AMDPMEAMDMPMD=MAME所以正确BEA=CDAPME=AMDP、E、D、A四点共圆APD=EAD=90CAE=180BACEAD=90CAPCMAAC2=CPCMAC=AB2CB2=CPCM所以正确故选:A【点评】本题考查了相似三角形的性质和判断在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案4 (20xx山东临沂3分)如图利用标杆BE测量建筑物的高度已知标杆BE高1.2m,测得AB=1.6mBC=12.4m则建筑物CD的高是()A9.3mB10.5mC12.4mD14m【分析】先证明ABEACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可【解答】解:EBCD,ABEACD,=,即=,CD=10.5(米)故选:B【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度5(20xx山东潍坊3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为()A(2m,2n)B(2m,2n)或(2m,2n)C(m,n)D(m,n)或(m,n)【分析】根据位似变换的性质计算即可【解答】解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(2),n(2),即(2m,2n)或(2m,2n),故选:B【点评】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k6.(2018湖南省永州市4分)如图,在ABC中,点D是边AB上的一点,ADC=ACB,AD=2,BD=6,则边AC的长为()A2B4C6D8【分析】只要证明ADCACB,可得=,即AC2=ADAB,由此即可解决问题;【解答】解:A=A,ADC=ACB,ADCACB,=,AC2=ADAB=28=16,AC0,AC=4,故选:B【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型7 (20xx四川宜宾3分)如图,将ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为4若AA=1,则AD等于()A2B3CD【考点】Q2:平移的性质【分析】由SABC=9、SAEF=4且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAEDAB知()2=,据此求解可得【解答】解:如图,SABC=9、SAEF=4,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到ABC,AEAB,DAEDAB,则()2=,即()2=,解得AD=2或AD=(舍),故选:A【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点8(20xx四川自贡4分)如图,在ABC中,点D、E分别是AB、AC的中点,若ADE的面积为4,则ABC的面积为()A8B12C14D16【分析】直接利用三角形中位线定理得出DEBC,DE=BC,再利用相似三角形的判定与性质得出答案【解答】解:在ABC中,点D、E分别是AB、AC的中点,DEBC,DE=BC,ADEABC,=,=,ADE的面积为4,ABC的面积为:16,故选:D【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC是解题关键9(20xx台湾分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A只使用苹果B只使用芭乐C使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论【解答】解:苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),小柔榨果汁时没有使用柳丁,设小柔榨完果汁后,苹果a颗,芭乐b颗,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,a=9x,b=x,苹果的用量为9xa=9x9x=0,芭乐的用量为7xb=7xx=x0,她榨果汁时,只用了芭乐,故选:B【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键10 (20xx台湾分)如图,ABC、FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DEBC,FGAB,FHAC,若BG:GH:HC=4:6:5,则ADE与FGH的面积比为何?()A2:1B3:2C5:2D9:4【分析】只要证明ADEFGH,可得=()2,由此即可解决问题;【解答】解:BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,DEBC,FGAB,FHAC,四边形BGFD是平行四边形,四边形EFHC是平行四边形,DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,FGH=B=ADE,FHG=C=AED,ADEFGH,=()2=()2=故选:D【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型11(2018湖北荆门3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则SEFG:SABG=()A1:3B3:1C1:9D9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:四边形ABCD是平行四边形,CD=AB,CDAB,DE=EF=FC,EF:AB=1:3,EFGBAG,=()2=,故选:C【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12(2018湖北恩施3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点已知FG=2,则线段AE的长度为()A6B8C10D12【分析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由CGAB、AB=2CG可得出CG为EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解【解答】解:四边形ABCD为正方形,AB=CD,ABCD,ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=6CGAB,AB=2CG,CG为EAB的中位线,AE=2AG=12故选:D【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键13. (20xx浙江临安3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是()ABCD【考点】相似三角形的判定,【分析】根据正方形的性质求出ACB,根据相似三角形的判定定理判断即可【解答】解:由正方形的性质可知,ACB=18045=135,A、C、D图形中的钝角都不等于135,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,=,图B中的三角形(阴影部分)与ABC相似,故选:B【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键14(20xx浙江临安3分)如图,在ABC中,DEBC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()ABCD【考点】相似三角形的判定和相似三角形的性质【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可【解答】解:DEBC,ADEABC,=故选:A【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错15(20xx重庆(A)4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为,则它的最长边为A. B. C. D. 【考点】相似三角形的性质【解析】利用相似三角形三边对应成比例解出即可。【解答】解:设所求最长边为xcm两三角形相似,,. 故选C【点评】此题主要考查相似三角形的性质相似三角形的三边对应成比例,该题属于中考当中的基础题。16(20xx广东3分)在ABC中,点D、E分别为边AB、AC的中点,则ADE与ABC的面积之比为()ABCD【分析】由点D、E分别为边AB、AC的中点,可得出DE为ABC的中位线,进而可得出DEBC及ADEABC,再利用相似三角形的性质即可求出ADE与ABC的面积之比【解答】解:点D、E分别为边AB、AC的中点,DE为ABC的中位线,DEBC,ADEABC,=()2=故选:C【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DEBC是解题的关键17(2018年四川省市)已知ABC与A1B1C1相似,且相似比为1:3,则ABC与A1B1C1的面积比为()A1:1B1:3C1:6D1:9【考点】S7:相似三角形的性质【分析】利用相似三角形面积之比等于相似比的平方,求出即可【解答】解:已知ABC与A1B1C1相似,且相似比为1:3,则ABC与A1B1C1的面积比为1:9,故选:D【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键二.填空题1(2018年四川省市)如图,在ABC中,DEBC,BF平分ABC,交DE的延长线于点F若AD=1,BD=2,BC=4,则EF=【考点】S9:相似三角形的判定与性质;KJ:等腰三角形的判定与性质【分析】由DEBC可得出ADEABC,根据相似三角形的性质和平行线的性质解答即可【解答】解:DEBC,F=FBC,BF平分ABC,DBF=FBC,F=DBF,DB=DF,DEBC,ADEABC,即,解得:DE=,DF=DB=2,EF=DFDE=2,故答案为:【点评】此题考查相似三角形的判定和性质,关键是由DEBC可得出ADEABC2 (20xx四川省绵阳市)如图,在ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=_.【答案】【考点】勾股定理,三角形中位线定理,相似三角形的判定与性质 【解析】【解答】解:连接DE,AD、BE为三角形中线,DEAB,DE= AB,DOEAOB, = = = ,设OD=x,OE=y,OA=2x,OB=2y,在RtBOD中,x2+4y 2=4 ,在RtAOE中,4x2+y2= ,+ 得:5x2+5y2= ,x2+y2= ,在RtAOB中,AB2=4x2+4y2=4(x2+y 2)=4 ,即AB= .故答案为: .【分析】连接DE,根据三角形中位线性质得DEAB,DE= AB,从而得DOEAOB,根据相似三角形的性质可得 = = = ;设OD=x,OE=y,从而可知OA=2x,OB=2y,根据勾股定理可得x2+4y2=4,4x2+y2= ,两式相加可得x2+y2= ,在RtAOB中,由股股定理可得AB= .3(20xx广东广州3分)如图9,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACD=BAEAF:BE=2:3 其中正确的结论有_。(填写所有正确结论的序号) 【答案】 【考点】三角形的面积,全等三角形的判定与性质,线段垂直平分线的性质,平行四边形的性质,相似三角形的判定与性质 【解析】【解答】解:CE是平行四边形ABCD的边AB的垂直平分线,AO=BO,AOE=BOC=90,BCAE,AE=BE,CA=CB,OAE=OBC,AOEBOC(ASA),AE=BC,AE=BE=CA=CB,四边形ACBE是菱形,故正确.由四边形ACBE是菱形,AB平分CAE,CAO=BAE,又四边形ABCD是平行四边形,BACD,CAO=ACD,ACD=BAE.故正确.CE垂直平分线AB,O为AB中点,又四边形ABCD是平行四边形,BACD,AO= AB= CD,AFOCFD, = ,AF:AC=1:3,AC=BE,AF:BE=1:3,故错误. CDOC,由知AF:AC=1:3, , = CDOC= , = + = = , 故正确.故答案为:.【分析】根据平行四边形和垂直平分线的性质得AO=BO,AOE=BOC=90,BCAE,AE=BE,CA=CB,根据ASA得AOEBOC,由全等三角形性质得AE=CB,根据四边相等的四边形是菱形得出正确.由菱形性质得CAO=BAE,根据平行四边形的性质得BACD,再由平行线的性质得CAO=ACD,等量代换得ACD=BAE;故正确.根据平行四边形和垂直平分线的性质得BACD,AO= AB= CD,从而得AFOCFD,由相似三角形性质得 = ,从而得出AF:AC=1:3,即AF:BE=1:3,故错误.由三角形面积公式得 CDOC,从知AF:AC=1:3,所以= + = = ,从而得出 故正确.4(20xx广东深圳3分)在RtABC中C=90,AD平分CAB,BE平分CBA,AD、BE相交于点F,且AF=4,EF= ,则AC=_【答案】【考点】勾股定理,相似三角形的判定与性质 【解析】【解答】解:作EGAF,连接CF,C=90,CAB+CBA=90,又AD平分CAB,BE平分CBA,FAB+FBA=45,AFE=45,在RtEGF中,EF= ,AFE=45,EG=FG=1,又AF=4,AG=3,AE= ,AD平分CAB,BE平分CBA,CF平分ACB,ACF=45,AFE=ACF=45,FAE=CAF,AEFAFC, ,即 ,AC= .故答案为: .【分析】作EGAF,连接CF,根据三角形内角和和角平分线定义得FAB+FBA=45,再由三角形外角性质得AFE=45,在RtEGF中,根据勾股定理得EG=FG=1,结合已知条件得AG=3,在RtAEG中,根据勾股定理得AE= ;由已知得F是三角形角平分线的交点,所以CF平分ACB,ACF=45,根据相似三角形的判定和性质得 ,从而求出AC的长.5(20xx四川宜宾3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)当E为线段AB中点时,AFCE;当E为线段AB中点时,AF=;当A、F、C三点共线时,AE=;当A、F、C三点共线时,CEFAEF【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,AE=EB=EF,EAF=EFA,CEF=CEB,BEF=EAF+EFA,BEC=EAF,AFEC,故正确,作EMAF,则AM=FM,在RtECB中,EC=,AME=B=90,EAM=CEB,CEBEAM,=,=,AM=,AF=2AM=,故正确,如图2中,当A、F、C共线时,设AE=x则EB=EF=3x,AF=2,在RtAEF中,AE2=AF2+EF2,x2=(2)2+(3x)2,x=,AE=,故正确,如果,CEFAEF,则EAF=ECF=ECB=30,显然不符合题意,故错误,故答案为【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题6(20xx山东泰安3分)九章算术是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步【分析】证明CDKDAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长【解答】解:DH=100,DK=100,AH=15,AHDK,CDK=A,而CKD=AHD,CDKDAH,=,即=,CK=答:KC的长为步故答案为【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度7. (2018山东滨州5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,EAF=45,则AF的长为【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明AMEFNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,四边形ABCD是矩形,D=BAD=B=90,AD=BC=4,NF=x,AN=4x,AB=2,AM=BM=1,AE=,AB=2,BE=1,ME=,EAF=45,MAE+NAF=45,MAE+AEM=45,MEA=NAF,AMEFNA,解得:x=,AF=故答案为:【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,8 (2018山东菏泽3分)如图,OAB与OCD是以点O为位似中心的位似图形,相似比为3:4,OCD=90,AOB=60,若点B的坐标是(6,0),则点C的坐标是(2,2)【考点】SC:位似变换;D5:坐标与图形性质【分析】根据题意得出D点坐标,再解直角三角形进而得出答案【解答】解:分别过A作AEOB,CFOB,OCD=90,AOB=60,ABO=CDO=30,OCF=30,OAB与OCD是以点O为位似中心的位似图形,相似比为3:4,点B的坐标是(6,0),D(8,0),则DO=8,故OC=4,则FO=2,CF=COcos30=4=2,故点C的坐标是:(2,2)故答案为:(2,2)【点评】此题主要考查了位似变换,运用位似图形的性质正确解直角三角形是解题关键9 (2018四川成都3分)已知 ,且 ,则 的值为_ 【答案】12 【考点】解一元一次方程,比例的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论