




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HLLYBQ整理 供“高中试卷网()”雅安中学2020届高三9月第一次月考数学试卷(理)一、选择题1.设集合,则()A. B. C. D. 2.若复数,复数在复平面内对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限3. 已知双曲线的一个焦点为,则焦点到其中一条渐近线的距离为( )A. B. C. D.4. 设函数,则( )A. 1 B. 2 C. D. 5. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入的值分别为,则输出的值为( )A. B. C. D. 6已知直线的倾斜角为,则( )A. B. C. D. 7.二项式的展开式中的系数是,则()A. 1B. C. D. 8数列an中“an2=an-1an+1对任意n鈮?且n鈭圢*都成立”是“an是等比数列”的( )A. 必要不充分条件 B. 充分不必要条件C. 充要条件 D. 既不充分也不必要条件9.定义域为的奇函数的图像关于直线对称,且,则( )A. 2018 B. 2020 C. 4034 D. 210.已知三棱锥四个顶点均在半径为的球面上,且,若该三棱锥体积的最大值为1,则这个球的表面积为( )A. B. C. D.11.已知椭圆的左、右焦点分別为,过的直线与椭圆交于两点,若是以为直角顶点的等腰直角三角形,则椭圆的离心率为( )A B C. D 12. 设是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则()A. B. 到直线的距离不大于2 C. 直线过抛物线的焦点D.为直径的圆的面积大于二、填空题13.命题:“xR,exx”的否定是_14. 已知满足,则的最大值为_15. 某共享汽车停放点的停车位排成一排且恰好全部空闲,假设最先来停车点停车的3辆共享汽车都是随机停放的,且这3辆共享汽车都不相邻的概率与这3辆共享汽车恰有2辆相邻的概率相等,则该停车点的车位数为_16. 已知函数,若,使得,则的取值范围是_三、解答题。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。17.在ABC中,角A,B,C的对边分别为a,b,c,已知()证明:a+b=2c;()求cosC的最小值.18.如图1,在中,,分别为,的中点,为的中点, ,将沿折起到的位置,使得平面平面, 为的中点,如图2()求证: 平面;()求二面角的平面角的余弦值.19.生蚝即牡蛎是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,依附寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如下表所示:()若购进这批生蚝,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);()以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在间的生蚝的个数为,求的分布列及数学期望.20.已知抛物线的焦点为,为抛物线上异于原点的任意一点,过点的直线交抛物线于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.()求抛物线的方程;()若直线,且和抛物线有且只有一个公共点,试问直线(为抛物线上异于原点的任意一点)是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.21.设函数()若函数在点处的切线方程为,求实数与的值;()若函数有两个零点,求实数的取值范围,并证明:.(二)选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22. 选修44:坐标系与参数方程在直角坐标系中,已知曲线的参数方程为为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为()写出曲线的极坐标方程,并指出它是何种曲线;()设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围 23选修45:不等式选讲设函数()当时,求不等式的解集;()若对恒成立,求的取值范围。雅安中学2020届高三9月考试数学试卷(理)参考答案一、选择题15, DCCDC 610, ABAAD 1112,DB12.【答案】B【解析】当直线MN的斜率不存在时,设M(,y0),N(,y0),由斜率之积为,可得,即,MN的直线方程为x2;当直线的斜率存在时,设直线方程为ykx+m,联立,可得ky2y+m0设M(x1,y1),N(x2,y2),则,即m2k直线方程为ykx2kk(x2)则直线MN过定点(2,0)则O到直线MN的距离不大于2故选:B二、填空题13, xR,exx 14, 4 15, 10 16.【答案】【解析】由题意,设,有零点,即,整理得,即直线与有交点,又由,(),令,解得,当时,函数单调递增,当时,函数单调递减,又,当时,分别画出与的图象,如图所示;由图象可得当,即时,与有交点,故答案为: 三、解答题17.解:由题意知,化简得,即因为, 所以从而 由正弦定理得由知所以 ,当且仅当时,等号成立 故 的最小值为18.解:()取线段的中点,连接, 因为在中, , 分别为, 的中点,所以 , 因为 , 分别为, 的中点,所以 , , 所以 , ,所以 四边形为平行四边形,所以 因为 平面, 平面,所以 平面 ()分别以为轴建立空间直角坐标系,则面的法向量, , ,则,设面的法向量,则,解得,所以,所以所以二面角的平面角的余弦值. 19.解:(1)由表中的数据可以估算妹纸生蚝的质量为,所以购进,生蚝的数列均为(只);(2)由表中数据知,任意挑选一只,质量在间的概率为,的可能取值为,则,所以的分布列为所以 20.解:(1)由题意知,设,则的中点为,因为,由抛物线的定义知:,解得或(舍去),由,解得,所以抛物线的方程为.(2)由(1)知,设,因为,则,由得,故,故直线的斜率为,因为直线和直线平行,故可设直线的方程为,代入抛物线方程得,由题意知,得.设,则,当时,可得直线的方程为,由,整理可得,所以直线恒过点,当时,直线的方程为,过点,所以直线恒过定点.21.解:(1)因为,所以又因为,所以,即 (2)因为,所以,令,则,令,解得,令,解得,则函数在上单调递增,在上单调递减,所以,又当时,当时,画出函数的图象,要使函数的图象与有两个不同的交点,则,即实数的取值范围为.由上知,不妨设,则,要证,只需证,因为,且函数在上单调递减,所以只需证,由,所以只需,即证,即证对恒成立,令,则因为,所以,所以恒成立,则函数在的单调递减,所以,综上所述. 22.解:()由(为参数)消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核子仪器伦理与社会责任考核试卷
- 《农产品的质量检测》课件
- 装饰材料企业品牌形象塑造考核试卷
- 《农村家禽饲养技术》课件
- 学校安全教育主要内容
- 纺织品的智能生产成本控制考核试卷
- 毛皮服装生产设备选型与采购考核试卷
- 燃气热水器安装与调试考核试卷
- 核电工程施工过程中的质量控制点管理考核试卷
- 建筑造型设计原理
- 家用扫地机器人机械结构设计
- (高清版)JTGT 5440-2018 公路隧道加固技术规范
- 职场C位指南-大学生职业素养养成智慧树知到期末考试答案章节答案2024年云南林业职业技术学院
- 2.6高压电力电容器运行与维护
- 美学与人生智慧树知到期末考试答案2024年
- GB/T 3953-2024电工圆铜线
- 碘缺乏病知识宣传课件
- 曙光医院网上查报告
- (附加条款版)医院劳务合同书
- GA/T 1093-2023安全防范人脸识别应用出入口控制人脸识别技术要求
- 港口危货作业单位主要安全管理人员试题及答案(536道)
评论
0/150
提交评论