高一数学函数的应用课件 人教_第1页
高一数学函数的应用课件 人教_第2页
高一数学函数的应用课件 人教_第3页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的应用,一、解答数学应用题的关键有两点:,一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学的抽象、概括,将实际问题归纳为相应的数学问题;二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;最终求解数学模型使实际问题获解.,一般的解题程序是:,例1按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数关系式如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?“复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息,答:复利函数式为,5年后的本例和为1117.68元,1某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚得利润最大,并求出最大利润,解:设商品售价定为x元时,利润为y元,则y=(x-8)60-10(x-10)=-10(x-12)2-16=-10(x-12)2+160(x10)当且仅当x=12时,y有最大值160元,即售价定为12元时可获最大利润160元,2课本P88练:3.一种产品的年产量是a件,在今后的m年内,计划使年产量平均每年比上一年增加P%,写出年产量随经过年数变化的函数关系式.,解:设年产量经过x年增加到y件,则y=a(1+P%)x(xN*且xm),4.一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低P%,写出成本随经过年数变化的函数关系式.,解:设成本经过x年降低到y元,则y=a(1-P%)x(xN*且xm),(一)课本P89习题2.93.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm3/s的速度向容器内注入某种溶液,求容器内溶液的高度x(cm)与注入溶液的时间t(s)之间的函数关系式,并写出函数的定义域与值域.,4.某人开汽车以60km/h的速度从A地到150km远处的B地,在B地停留1h后,再以50km/h的速度返回A地,把汽车离开A地的路程x(km)表示为时间t(h)(从A地出发时开始)的函数,并画出函数的图象;再把车速vkm/h表示为时间t(h)的函数,并画出函数的图象.,它的图象如图:,说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.,小结1:函数拟合与预测的步骤:在中学阶段,学生在处理函数拟合与预测的问题时,通常需要掌握以下步骤:能够根据原始数据、表格.绘出散点图通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是不可能发生的因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了根据所学函数知识,求出拟合直线或拟合曲线的函数关系式利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据,课本P88练习1.将一个底面圆的直径为d的圆柱截成横截面为长方形的棱柱,若这个长方形截面的一条边长为x,对角线长为d,截面的面积为A,求面积A以x为自变量的函数式,并写出它的定义域.,2.如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式,并讨论这个函数的定义域.,课本P89习题2.91.建筑一个容积为8000m3,深为6m的长方体蓄水池,池壁的造价为a元/m2,池底的造价为2a元/m2,把总造价y(元)表示为底的一边长为x(m)的函数.,2.如图,灌溉渠的横截面是等腰梯形,底宽2m,边坡的倾角为45,水深hm,求横断面中有水面积A(m2)与水深h(m)的函数关系式,例2、用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可清除蔬菜上残留农药量的1/2,用水越多洗掉的农药量也越多,但总有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留量的农药量之比为函数f(x)。(1)试规定f(0)的值,并解释其实际意义;(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;(3)设f(x)=1/(1+x2),现有a(a0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,哪种方案清洗后蔬菜上残留的农药量比较少?说明理由。,例(沙场点兵P155.6)武汉市一家报刊摊主从报社买进晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只卖出250份,但每天从报社买进的份数必须相同.他应该每天从报社买进多少份,才能使每月获得的利润最大?并计算他一个月最多可赚得多少元.,解:设每天从报社买进x份(250x400),则每月共销售(20 x+10250)份,又卖出的报纸每份获利0.10元,退回的每份亏损0.12元,退回报社10(x-250)份,依题意,每月获得的利润,f(x)=0.10(20 x+10250)-0.1210(x-250),=0.8x+550.,f(x)在250,400上是增函数,当x=400时,f(x)取得最大值,最大值为870.,答:该摊主每天从报社买进400份时,才能使每月获得的利润最大,一个月最多可赚870元.,例9甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b,固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?,其中0bc2,因而a-bcva-bc20.,也即当v=c时,全程运输成本y最小.,综上所述,为使全程运输成本y最小,2、与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切建立相关函数解析式,然后应用函数、方程和不等式的有关知识加以综合解答.常见的函数模型有一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论