3.2.1复数代数形式的加减运算及其几何意义_第1页
3.2.1复数代数形式的加减运算及其几何意义_第2页
3.2.1复数代数形式的加减运算及其几何意义_第3页
3.2.1复数代数形式的加减运算及其几何意义_第4页
3.2.1复数代数形式的加减运算及其几何意义_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2.1复数的代数形式的加减运算及其几何意义,复数z=a+bi,直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面(简称复平面),一一对应,z=a+bi,复数的几何意义(一),复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a,Z(a,b),z=a+bi,练习:课本54页练习,(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。,练习:,1下列命题中的假命题是(),D,C,2“a=0”是“复数a+bi(a,bR)所对应的点在虚轴上”的()。(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件,结论:实轴上的点都表示实数;虚轴上点除原点外都表示纯虚数。,例1已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。,表示复数的点所在象限的问题,复数的实部与虚部所满足的不等式组的问题,转化,(几何问题),(代数问题),总结:,数形结合思想,变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2。,例1已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。,变式二:证明对一切m,此复数所对应的点不可能位于第四象限。,不等式解集为空集,,所以复数所对应的点不可能位于第四象限.,小结,问题:实数有加、减、乘、除、乘方、开方等运算,那么复数是否也能进行这些运算呢?,1.复数加减法的运算法则:,运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.,即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).,(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3C,有,z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).,x,o,y,Z1(a,b),Z2(c,d),Z(a+c,b+d),符合向量加法的平行四边形法则.,1.复数加法运算的几何意义?,新课讲解,x,o,y,Z1(a,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论