




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,数学与生活,.,2,生活中几何事物里的数学思想,1.井盖为什么是圆的呢。这里就有着数学的思想。因为圆形的每一天直径都是相等的,井盖做成圆形的,那么无论怎么放置,盖子都可以恰好盖上,而不会掉到井里去,同时也保障了在下面施工的工作人员的安全。除了这个最主要的原因外,圆形没有棱角,搬运可以滚动,节省体力。,.,3,2.蜜蜂的蜂房为什么要是正六边行的呢?这有两个原因,一是最少的材料,二是最多的空间。六边形的内角为120度,3个六边形刚好可以围城360度,不浪费一点空间,边数超过六边形则会浪费空间。如果用四边形或者三边形,虽然不浪费空间,可是去浪费材料。所以蜜蜂在营造蜂房的时候,可是拥有着丰富的数学知识啊。,.,4,.,5,3.还有像雪花、枫叶这些我们喜爱的物体,除去它本身的颜色或是涵义不说,最先吸引我们的便是它们的形状。那为什么我们会喜欢这样的形状呢?因为其有着数学美中的另一特征,即对称美。人们对于对称美的追求是自然的、朴素的。很多人会觉得所有平面图形中最美的是圆形,因为它成中心对称,无数条直径均是其对称轴,可以说从任何一个角度观察它都是对称的。,.,6,还有,我们大多数人都喜欢音乐吧,那一段段优美动人的乐章,总会让我们陶醉其中。抛开外表,我们究其本质,也就是由1、2、3、4、5、6、7这七个数字代表的七个音阶的各种组合。所以在音乐美中,其实已经融合着数学美。这意味着什么呢?数学美不仅仅是单独存在于数学世界中,而且已经混合于其他世界,例如音乐世界。数学对于美的创造,在生活中随处可见,.,7,数学中的名人,华罗庚,华罗庚早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。华罗庚也是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者。26华罗庚在多复变函数论,典型群方面的研究领先西方数学界10多年,是国际上有名的“典型群中国学派”。开创中国数学学派,并带领达到世界一流水平。培养出众多优秀青年,如王元、陈景润、万哲先、陆启铿、龚升等。,.,8,.,9,陈景润,陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1-21981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任数学学报主编。1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。3-4,.,10,哥德巴赫猜想,在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。1因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和记作a+b。1966年陈景润证明了1+2成立,即任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。,.,11,趣味数学,缪勒莱耶错觉,.,12,缪勒-莱尔错觉(Mller-Lyerillusion)几何图形错觉的一种。缪勒-莱尔1889年提出。两条原本等长的线条因两端箭头的朝向不同而看起来箭头朝内的线条比箭头朝外的线条要短些的现象。其原因可能是箭头朝外使线条所占空间大,而使该线条似乎延长了,相反箭头朝内则使该线条产生收缩感。故看似箭头朝外的线条要长于箭头朝内的线条(如图)。据试验报道,主观上错误估计量要比实际线长多25%30%。海曼斯1896年研究发现,错误估计量的大小与斜线和线条间夹角的余弦成正比,当夹角为90时,错觉量等于零。,.,13,填充错觉,盯住中间的黑点,周围的五彩色团会慢慢消失的。同样的你试试右边的那幅,这次灰雾不会消失了。这是怎么回事?,.,14,同样的你试试下边的那幅,这次灰雾不会消失了。这是怎么回事?为什么灰雾有时消失有时又不消失?,.,15,我们的眼睛不习惯于固定的刺激,视觉中有一个系统调节眼球的运动使物体的视像保持在视网膜上的某个固定的区域,我们将这个系统称之为视觉稳定系统。你可以通过后像来体验这种视觉稳定的效果。如果你盯着一个物体看上一分钟,移走目光后它的后像仍会在眼前停留几秒种,然后才会消失。你可以通过眨眼使其多停留一会儿。现在再来看看最上边的那幅图,大多数人当他们凝视黑点的时候都感到灰雾消失了,而对下边的那幅灰点不会消失。在最上边的图里,从中心的黑点向外灰雾逐渐由黑变浅,这种渐变与视觉的停留过程是一致的,当然如果你的目光随意移动的话,灰雾的视像一直保留在视网膜上。当你注目盯着黑点时,灰雾逐渐减弱直到消失,而背景的颜色取而代之。前边的图与后边的几乎一模一样,除了有一个黑环以外。黑环的作用是无论你怎样努力的盯着灰雾都能使其不至于在视觉中消失。当你凝视黑点的时候,你的眼球仍然在不时的运动,当然这种眼球的颤动与扫视时的那种运动是不同的,这时的颤动是非常微弱的。但正是这种运动使视像停住。当一个物体象左边图中的灰雾一样,颜色逐渐由灰变白时,这种变化正好与视像逐渐消失的变化是一样的,这样你就会觉得物体消失了。当你移动目光后再来看灰雾时,它又会再出现,这是因为你的眼球做了一个足够大的运动。后边图中灰雾不消失的原因在于很小的眼动都能使视像停留。,.,16,总结,数学,很多人只是把它当做一门学科,总是觉得它是做题的代名词。如果这样认为,那就实在太可惜了,因为你错过了数学中精华的东西。数学,有着其独
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年实验室上岗试题及答案
- 2025年山西省政府采购评审专家考试真题含答案
- CN222959673U 直线型汽车座椅靠背电动锁栓 (浙江华悦汽车零部件股份有限公司)
- 2025年加氢模拟试题及答案
- 珠宝考研试题及答案
- 电厂检修培训考试题及答案
- CN120093336B 利用螺旋ct影像实现脊柱形变患者骨质疏松筛查的方法 (广东医科大学附属医院)
- CN120079912B 一种铝电机前端盖钻孔加工装置及加工方法 (山西三鼎机械制造股份有限公司)
- 2025年后置埋件题库及答案
- 国际贸易政策与经济波动
- 《心房颤动诊断和治疗中国指南2023》-抗凝解读
- DZ∕T 0033-2020 固体矿产地质勘查报告编写规范(正式版)
- 模块化箱式房屋安装及验收技术标准2
- 健康讲座:颈椎病
- NY-T 3213-2023 植保无人驾驶航空器 质量评价技术规范
- 金融数据分析 课件 欧阳资生 第1-5章 导论、金融时间序列线性模型 -极值事件
- 刀工刀法与烹饪技艺
- 桁吊操作培训课件
- 柔性电子材料的突破与发展
- 企业内部涉密测绘成果使用流程规章制度
- 低年级中秋节班会
评论
0/150
提交评论