2019_2020学年高中数学课时分层作业12平面与平面垂直(含解析)新人教B版必修2.docx_第1页
2019_2020学年高中数学课时分层作业12平面与平面垂直(含解析)新人教B版必修2.docx_第2页
2019_2020学年高中数学课时分层作业12平面与平面垂直(含解析)新人教B版必修2.docx_第3页
2019_2020学年高中数学课时分层作业12平面与平面垂直(含解析)新人教B版必修2.docx_第4页
2019_2020学年高中数学课时分层作业12平面与平面垂直(含解析)新人教B版必修2.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时分层作业(十二)平面与平面垂直(建议用时:60分钟)合格基础练一、选择题1经过平面外一点和平面内一点与平面垂直的平面有()A0个 B1个C无数个D1个或无数个D当两点连线与平面垂直时,可作无数个垂面,否则,只有1个2对于直线m,n和平面,能得出的一个条件是()Amn,m,nBmn,m,nCmn,n,mDmn,m,nCn,mn,m,又m,由面面垂直的判定定理,.3设m,n是两条不同的直线,是两个不同的平面下列命题中正确的是()A若,m,n,则mnB若,m,n,则mnC若mn,m,n,则D若m,mn,n,则DA中,m,n可能为平行、垂直、异面直线;B中,m,n可能为异面直线;C中,m应与中两条相交直线垂直时结论才成立4.如图所示,平面PAD矩形ABCD,且PAAB,下列结论中不正确的是()APDBDBPDCDCPBBCDPABDA若PDBD,则BD平面PAD,又BA平面PAD,则过平面外一点有两条直线与平面垂直,不成立,故A不正确;因为平面PAD矩形ABCD,且PAAB,所以PA矩形ABCD,所以PACD,ADCD,所以CD平面PAD,所以PDCD,同理可证PBBC.因为PA矩形ABCD,所以由直线与平面垂直的性质得PABD.故选A.5.如图所示,三棱锥PABC的底面在平面内,且ACPC,平面PAC平面PBC,点P,A,B是定点,则动点C的轨迹是()A一条线段B一条直线C一个圆D一个圆,但要去掉两个点D平面PAC平面PBC,ACPC,平面PAC平面PBCPC,AC平面PAC,AC平面PBC.又BC平面PBC,ACBC.ACB90.动点C的轨迹是以AB为直径的圆,除去A和B两点二、填空题6如图所示,平面平面,在与交线上取线段AB4,AC,BD分别在平面和内,ACAB,BDAB,AC3,BD12,则CD_.13连接BC.BDAB,AB,BD.BC,BDBC,CBD是直角三角形在RtBAC中,BC5.在RtCBD中,CD13.7如图所示,在三棱锥PABC中,平面PAC平面ABC,PCA90,ABC是边长为4的正三角形,PC4,M是AB边上的一动点,则PM的最小值为_2连接CM,则由题意知PC平面ABC,可得PCCM,所以PM,要求PM的最小值只需求出CM的最小值即可,在ABC中,当CMAB时,CM有最小值,此时有CM42,所以PM的最小值为2.8在四棱锥PABCD中,PA底面ABCD且底面各边都相等,M是PC上一点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为正确的条件即可)DMPC(或BMPC)连接AC,因为PA底面ABCD,所以PABD,因为四边形ABCD的各边相等,所以ACBD,且PAACA,所以BD平面PAC,即BDPC,要使平面MBD平面PCD,只需PC垂直于面MBD上的与BD相交的直线即可,所以可填DMPC(或BMPC)三、解答题9如图所示,三棱锥PABC中,已知ABC是等腰直角三角形,ABC90,PAC是直角三角形,PAC90,平面PAC平面ABC.求证:平面PAB平面PBC.证明平面PAC平面ABC,平面PAC平面ABCAC,PAAC,PA平面ABC.又BC平面ABC,PABC.又ABBC,ABPAA,AB平面PAB,PA平面PAB,BC平面PAB.又BC平面PBC,平面PAB平面PBC.10如图所示,在矩形ABCD中,已知ABAD,E是AD的中点,沿BE将ABE折起至ABE的位置,使ACAD,求证:平面ABE平面BCDE.证明如图所示,取CD的中点M,BE的中点N,连接AM,AN,MN,则MNBC.ABAD,E是AD的中点,ABAE,即ABAE.ANBE.ACAD,AMCD.在四边形BCDE中,CDMN,又MNAMM,CD平面AMN.CDAN.DEBC且DEBC,BE必与CD相交又ANBE,ANCD,AN平面BCDE.又AN平面ABE,平面ABE平面BCDE.等级过关练1已知平面、和直线m、l,则下列命题中正确的是()A若,m,lm,则lB若m,l,lm,则lC若,l,则lD若,m,l,lm,则lD选项A缺少了条件l;选项B缺少了条件;选项C缺少了条件m,lm;选项D具备了面面垂直的性质定理的全部条件故选D.2已知平面平面,l,点A,Al,直线ABl,直线ACl,直线m,m,则下列四种位置关系中,不一定成立的是 ()AABmBACmCABDACD如图,ABlm,ACl,mlACm,ABlAB.故选D.3如图所示,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点有以下四个命题:PA平面MOB;MO平面PAC;OC平面PAC;平面PAC平面PBC.其中正确的命题是_(填上所有正确命题的序号)因为PA平面MOB,所以不正确;因为MOPA,而且MO平面PAC,所以正确;OC不垂直于AC,所以不正确;因为BCAC,BCPA,ACPAA,所以BC平面PAC,所以平面PAC平面PBC,所以正确4如图,平行四边形ABCD中,ABBD,沿BD将ABD折起,使平面ABD平面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为_3因为平面ABD平面BCD,平面ABD平面BCDBD,ABBD,所以AB平面BCD.所以平面ABC平面BCD,因为ABBD,ABCD,所以CDBD.又因为平面ABD平面BCD,所以CD平面ABD,所以平面ACD平面ABD,共3对5如图所示,在正四棱柱ABCDA1B1C1D1中,E为AD的中点,F为B1C1的中点(1)求证:A1F平面ECC1;(2)在CD上是否存在一点G,使BG平面ECC1?若存在,请确定点G的位置,并证明你的结论;若不存在,请说明理由解(1)如图,在正四棱柱ABCDA1B1C1D1中,取BC的中点M,连接AM,FM,所以B1FBM且B1FBM,所以四边形B1FMB是平行四边形,所以FMB1B且FMB1B.因为B1BA1A且B1BA1A,所以FMA1A且FMA1A,所以四边形AA1FM是平行四边形,所以A1FAM.因为E为AD的中点,所以AEMC且AEMC.所以四边形AMCE是平行四边形所以CEAM,所以CEA1F.因为A1F平面ECC1,EC平面ECC1,所以A1F平面ECC1.(2)在CD上存在一点G,使BG平面ECC1.取CD的中点G,连接BG,如图在正方形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论