




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SignalsandSystems,Chapter9TheLaplaceTransformLiuKe,SchoolofAutomationEngineering,9.0Introduction,RepresentthesignalsandLTIsystems,Defect:cantbeusedinunstablesystem,Fouriertransform:,AnalysistheLTIsystemsinotherdomain,FouriertransformAnalysisthesysteminfrequencydomain,LaplacetransformAnalysisthesysteminSdomain,ConvolutionAnalysisthesystemintimedomain,Thecontentsofthechapter,TheLaplacetransformandInverseLaplacetransformTheROCforLaplacetransformGeometricevaluationoftheFouriertransformfromthePole-ZeroplotPropertiesoftheLaplacetransformAnalysisandcharacterizationofLTIsystemusingtheLaplacetransformSystemfunctionalgebraandblockdiagramrepresentationsTheunilateralLaplacetransform,9.1TheLaplacetransform,ConceptionLaplacetransformROCPole-ZeroplotTherelationshipbetweenLaplacetransformandFouriertransform,TherepresentationoftheLaplacetransform,Fouriertransform:,Laplacetransform:,TherelationshipbetweentheLaplacetransformandtheFouriertransform,If,FouriertransformisaparticularformofLaplacetransform,LaplacetransformisFouriertransformof,Example9.1,Example9.2,Regionofconvergence(ROC),ROCtherangeofvaluesofSforwhichintegralinconverges,Laplacetransformincludes:thealgebraicexpressionROC,TherepresentationofROCComplexplane(S-plane),Example9.3,Example9.4,Pole-Zeroplot,Laplacetransformmaybearatioofpolynomials,PolestherootsofD(S)ZerostherootsofN(S),TherepresentationofpolesandzerosPole-Zeroplot,AnotherrepresentationofLaplacetransformPole-ZeroplotandROC,Theorderofpoleorzero,Example9.5,Summarization,TherepresentationofLaplacetransformTherelationshipbetweenLaplacetransformandFouriertransformROCPole-Zeroplot,9.2TheROCforLaplacetransform,ThecharacteristicofROCTherelationshipbetweentheROCandthesignals,Property1theROCofX(S)consistsofstripsparalleltothejw-axisinthes-plane,Property2forrationalLaplacetransforms,theROCdoesnotcontainanypoles,Property3ifx(t)isoffinitedurationandisabsolutelyintegrable,thentheROCistheentires-plane,Example9.6,Property4ifx(t)isrightsided,andifthelineRes=isintheROC,thenallvaluesofSforwhichReswillalsobeintheROC,Property5ifx(t)isleftsided,andifthelineRes=isintheROC,thenallvaluesofSforwhichReswillalsobeintheROC,Property6ifx(t)istwosided,andifthelineRes=isintheROC,thentheROCwillconsistofastripinthes-planethatincludethelineRes=,Example9.7,Property7iftheLaplacetransformX(S)ofx(t)isrational,thenitsROCisboundedbypolesorextendstoinfinity.Inaddition,nopolesofX(S)arecontainedintheROC,Property8iftheLaplacetransformX(S)ofx(t)isrationalifx(t)isrightsided,theROCistheregioninthes-planetotherightoftherightmostpoleifx(t)isleftsided,theROCistheregioninthes-planetotheleftoftheleftmostpole,Example9.8,9.3TheinverseLaplacetransform,TherepresentationoftheinverseLaplacetransformTheusualmethodofdeterminetheinverserationalLaplacetransform,TherepresentationoftheinverseLaplacetransform,TheusualmethodofdeterminetheinverserationalLaplacetransform,Partial-fractionexpansion,Example9.9,Example9.10,Example9.11,9.4GeometricevaluationoftheFouriertransformfromthePole-Zeroplot,ReviewtherelationshipbetweenFouriertransformandLaplacetransformAsimplemethodgeometricevaluation,ReviewtherelationshipbetweentheLaplacetransformandFouriertransform,Thebasicknowledgeofgeometricevaluation,9.5PropertiesoftheLaplacetransform,LinearityTimeshiftingShiftinginthes-domainTimescalingConjugationConvolutionpropertyDifferentiationinthetimedomainDifferentiationinthes-domainIntegrationinthetimedomainTheinitial-andfinal-valuetheorems,Example9.13,Linearity,Timeshifting,Shiftinginthes-domain,Timescaling,Conjugation,Convolutionproperty,Differentiationinthetimedomain,DifferentiationintheS-domain,Example9.14,Example9.15,Integrationinthetimedomain,Theinitial-andfinal-valuetheorems,Example9.16,9.7AnalysisandcharacterizationofLTIsystemusingtheLaplacetransform,TherelationshipbetweenthepropertiesofsystemandH(S)HowcangettheX(S)orH(S)orY(S),Severalimportantpropertiesofsystem,Causality,TheROCassociatedwiththesystemfunctionforacausalsystemisaright-halfplane,Forasystemwitharationalsystemfunction,causalityofthesystemisequivalenttotheROCbeingtheright-halfplanetotherightoftherightmostpole,Example9.17,Thesystemiscausal,sotheROCofH(S)isaright-halfplane,Example9.18,Thesystemisnotcausal,theROCofH(S)isnotaright-halfplane,Example9.19,ROCisaright-halfplane,butthesystemisnotcausal,unlessthesystemisrational,Stability,AnLTIsystemisstableifandonlyiftheROCofitssystemfunctionH(S)includestheentirejw-axisi.e.ReS=0,Example9.20,AcausalsystemwithrationalsystemfunctionH(S)isstableifandonlyifallofthepolesofH(S)liesintheleft-halfofthes-planei.e.,allofthepoleshavenegativerealparts,Example9.21,LTIsystemcharacterizedbylinearconstant-coefficientdifferentialequations,SomeexampleTherelationshipbetweensystembehaviorandthesystemfunction,Themethodofdetermineh(t)bydifferentialequations,Usepartialfractionexpansion,Example9.23,Example9.24,Example9.25,Example9.26,AnLTIsystemincludetheinformationasbelow:1.thesystemiscausal2.thesystemfunctionisrationalandhasonlytwopoles,ats=-2ands=43.Ifx(t)=1,theny(t)=04.thevalueoftheimpulseresponseatt=0+is4,Example9.27,Astableandcausalsystem,H(S)isrational,containsapoleats=-2,anddoesnothaveazeroattheorigin,pleasedeterminethestatementsbelow:,P723-14P728-27P729-34,9.8Systemfunctionalgebraandblockdiagramrepresentations,ReviewthesystemfunctionsforinterconnectionsofLTIsystemSignal-passplotTheexampleofblockdiagramrepresentations,Parallelinterconnection,Seriescombination,Feedbackinterconnection,Signal-passplot(信流图),Someconcepts节点表示一个信号。只有信号输出的节点称为源点,只有信号输入的节点是阱点,既有信号输入、又有信号输出的节点称为混合节点。节点所代表的信号等于输入该节点的全部信号的和,与输出支路无关。支路节点之间的有向线段称为支路通路一条或几条同方向的支路组成通路。通路的转移函数等于各支路转移函数的乘积。不闭合的通路称为开路,闭合的通路称为环路。,信流图分析梅森规则(相关术语1),接触没有公共节点的通路称为不接触通路切断支路切断某条支路意味着取消这条支路而仍然保存两端的节点(不移去节点)移去节点移去某节点意味着截断与该节点连接的全部支路(移去该节点和与该节点相连接的所有支路)移去通路移去某一条通路意味着移去该通路上的所有节点,信流图分析梅森规则(相关术语2),信流图行列式,信流图分析梅森规则,梅森规则应用举例,Example9.28,Example9.29,Example9.30,Directform,Cascadeform,Parallelform,Example9.31,Directform,Cascadeform,Parallelform,P723-17,9.9TheunilateralLaplacetransform,RepresentationoftheunilateralLaplac
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《2025年劳动合同解除协议范本》
- 2025年武汉劳动合同模板
- 2025年劳动合同制度与社会保障制度的融合与发展
- 搬运安全知识培训课件
- 精准选人用人新途径:村干部招聘面试题解读
- 工业互联网面试题库:各行业面试必 备
- 艺术学校面试经验分享:洛阳艺校面试题及应对策略
- 绿色能源领域求职者必 备:煤化工行业招聘面试题及答案解析
- 高级商务面试题库指南
- 高级生物信息学分析岗位面试题
- GB/T 18344-2025汽车维护、检测、诊断技术规范
- 2025年医院电子病历系统在医疗信息化中的应用优化与患者满意度报告
- 房屋应急维修管理办法
- 高考改革培训
- 中国电子艾灸仪行业投资分析及发展战略咨询报告
- 安全监理试题及试题答案
- 粮食机收减损培训课件
- 道德与法治作业设计感悟
- 小学生编织手工课件
- 广西现代物流集团招聘笔试真题2024
- 2025餐饮劳动合同书 电子版
评论
0/150
提交评论