




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大值与最小值,(1)明确闭区间a,b上的连续函数f(x),在a,b上必有最大、最小值(2)理解上述函数的最值存在的可能位置(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤,学习重点:会求闭区间上的连续函数的最值.,学习难点:发现闭区间上的连续函数f(x)的最值只可能存在于极值点处或区间端点处.,一、复习与引入,1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:如果在x0附近的左侧右侧,那么,f(x0)是极大值;如果在x0附近的左侧右侧,那么,f(x0)是极小值.,2.导数为零的点是该点为极值点的必要条件,而不是充分条件.极值只能在函数不可导的点或导数为零的点取到.,3.在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小,而不是极值.,二、新课函数的最值,观察右边一个定义在区间a,b上的函数y=f(x)的图象.,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_。,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,导数的应用-求函数最值.,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个为最小值.,求f(x)在闭区间a,b上的最值的步骤,(1)求f(x)在区间(a,b)内极值(极大值或极小值),求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,展示安排及要求,高效点评、拓展提升、大胆质疑,课堂小结:回扣目标总结收获评出优秀小组和个人,设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值与最小值的步骤如下:,(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值,(1)求f(x)在(a,b)内的极值;,总结求最值的步骤,上述步骤建议列表完成,五、小结,1.求在a,b上连续,(a,b)上可导的函数f(x)在a,b上的最值的步骤:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.,2.求函数的最值时,应注意以下几点:,(1)要正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初级银行从业资格题库及答案
- 大学生报社寒假实习总结
- 受精卵分化课件
- 取消播放课件格式的快捷键
- 合肥化工营运安全培训班课件
- 合肥信息安全教育培训课件
- 2025银行社会面试题库及答案
- 2025银行评职称面试题及答案
- 2025银行遴选面试题及答案
- 2025银行经典面试题及答案
- 驾校暑期安全生产方案(2篇)
- 24春国家开放大学《教育法学》终结性考试(大作业)参考答案
- 肺癌的护理病例讨论课件
- 国际工程风险管理案例分析
- 《旅游学概论》第一章
- 甘肃省水利工程单位法定代表人授权书、工程质量终身责任承诺书、公示牌、永久责任碑(牌)
- 毛石混凝土挡墙专项施工方案
- 《一次性使用无菌医疗器械监督管理办法》
- 边坡工程地质勘察
- GB/T 3810.14-2016陶瓷砖试验方法第14部分:耐污染性的测定
- GB/T 26567-2011水泥原料易磨性试验方法(邦德法)
评论
0/150
提交评论